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ABSTRACT

.

The calculation and implementation of the neighboring optimal
feedback control law for multi-input nonlinear dynamical systems,
using discontinuous control, is the subject of this study. The con-
cept of neighboring optimal feedback control of systems with continuous,
unbounded control functions has been investigated by others. A separate
treatment of the problem is necessary, however,when the control function
is discontinuous. This is often the case when optimal control of sys-
tems with bounded control inputs is desired. The differentiating
features of this class of problems are the control discontinuities
and the inherent system uncontrollability when the number of remaining
switch times is less than the number of specified terminal constraints.
In this paper, a derivation of the neighboring optimal control law
is presented, and a feedback mechanization of this control law is
described. The neighboring control law is determined by minimizing
the second-order terms in the expansion of the performance index about
an optimal, nominal path. A distinction is made between real time along
the neighboring path and nominal time along the nominal path., The con-
cept of "time-to-go" is used to choose the nominal time. This concept
is applied in two different ways, depending upon whether the terminal
time is fixed or free. An open-loop algorithm which determines the
number of neighboring switch times, the initial and final control
functions, and the most appropriate nominal path , is presented. This
algorithm initiates the feedback phase of the mechanization of the neigh-
boring control law. The feedback mechanization allows for a possible re-
‘ordering of the control-component switching sequence, and requires

storage of only a small number of feedback gain matrices.
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Three example problems, including the minimum-time satellite
attitude-acquisition problem, are presented. These problems demon-
strate the feasibility of neighboring optimal feedback control of
systems with discontinuous control functions, and show the action
of the neighboring control scheme when applied to states which do
not lie in the immediate neighborhood of the nominal trajectory.

For these particular examples, it was found that the neighboring
control scheme works quite well even when the deviations in the
neighboring state, away from the nominal, are large. When these
deviations are large, however, the terminal constraints can no longer

be satisfied exactly.
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CHAPTER I

INTRODUCTION

The calculation and implementation of optimal, discontinuous
control laws for high-order systems is of current interest, A dis-
continuous control law is one that requires sudden changes of the con-
trol components from one discrete level to another. Optimal control
laws which are discontinuous, often arise when the components of the
control are bounded in magnitude, It is this class of optimization

problems which is of interest in this study.

1.1 Problem Motivation

Minimum-time and minimum-fuel control laws are often discontinuous.
Several techniques have been developed to find minimum-time and minimum-
fuel open-loop control functions for a specified initial state. Only
for some very special, low-order systems, have optimal feedback control
laws been determined.

A problem involving a high-order, multi-input system, of current
interest in the aerospace field, is the minimum-fuel or minimum-time
attitude control of an orbiting satellite, This problem involves a
6th-order system with three bounded control inputs when three cold gas
jets with bounded thrusts are used as the controlling mechanism, An
optimal feedback control law, valid for all points in state-space, has
proved all but impossible to obtain for a high-order system such as this.
It is possible, however, to obtain a feedback control law, which is nearly
optimal, and which is valid for a restricted region in state-space.
Developing such a control scheme, applicable to multi-input, nonlinear,
high-order systems, using discontinuous control, is the objective of

this study.



The approach used here is similar to the approach used by others
for systems with unbounded control and continuous control functions,

A neighboring optimal feedback control law is derived which is valid
for points in state-space that are in the neighborhood of an optimal,
nominal trajectory. A neighboring optimal feedback control law is a
control law which is based upon the state deviation from a nominal
optimum path, and upon the open-loop control function used to generate
the nominal path. The technique used to generate this control law is
to expand the performance index, to second-order, about the nominal
path, and then determine the control deviations, away from the nominal,
by minimizing the second-order terms in the expansion.*

Three example problems, including the minimum-time attitude
control problem mentioned above, are presented in this paper. The
purpose of presenting these examples is twofold;1l) To demonstrate the
feasibility of a neighboring optimal control scheme for systems pos-
sessing discontinuous control functions, and 2) to show the action
of the neighboring control law when it is applied to states which do

not lie in the immediate neighborhood of the nominal trajectory.

1.2 Previous Results

Several techniques have been discussed in the literature for
solving optimization problems which result in optimal, discontinuous,
open-loop control functions. Among the first-order algorithms developed

to solve these optimization problems are those of Hales [1] and Wolske [2].%%*

* It will be shown, in Section 3.2, that the optimal nominal and

neighboring control laws are identical to first-order.

*k .
Numbers in brackets, [*], refer to references given at the end

of this paper,



Hales' method is quite general, but convergence to the optimal solution
is slow. The rate of convergence of Wolske's method is excellent, but
his algorithm is restricted to handle only minimum-fuel problems.

Several second-order algorithms have also been developed to solve
these problems. Among the most recent are those developed by Dyer and
McReynolds [3,4], and Jacobson [5]. The theory upon which these algo-
rithms are based is the same. The algorithm of Jacobson, however, ap-
pears to be superior since it is less sensitive to the initial choice
of the control history. McNeal [6] also proposed a second-order
algorithm which is based upon a somewhat different theoretical approach.

All of the above methods, however, are iterative techniques which
converge to the open-loop solution of the optimization problem. The
use of the second variation to obtain a neighboring optimal feedback
control law was proposed, independently, by Breakwell et al. [7] and
Kelley [é]. It was assumed by these authors, however, that the avail-
able control effort is unbounded, and that the control histories are
continuous. Hence, this theory is not applicable to problems for
which the optimal control law is discontinuous.

First McIntyre [9], and then McNeal [6], considered the problem
of neighboring optimal feedback control with discontinuous control
functions. Both authors expanded the performance index to second-
order about an optimal, nominal path, and then determined the neigh-
boring control law, in terms of deviations from the nominal control
law, by minimizing the second-order terms in the expansion. Each
author assumed that only one control variable of a multi-input dynamical
system was discontinuous. In addition, McNeal considered the case where

measurement noise and/or random disturbances act on the system. The



results of the present study, concerning systems with multi-
dimensional discontinuous control functions, are basically in
agreement with those results of McIntyre and McNeal which pertain
tonoise- free systems with a scalar discontinuous control function.
The derivation here, however, is somewhat different from those of the
other two authors,

Neither McNeal, nor McIntyre, made a distinction between real
time, t , along the neighboring path, and nominal time, t s along
the nominal path. Hence, both authors implicitly assumed that t =t
in their mechanization of the neighboring control law, With this choice
for the nominal time, the neighboring control law mechanization described
by McNeal and McIntyre becomes open-loop after the nominal switch times
and nominal final time, when the switch-time and final-time perturbations
are positive.* This technique highly restricts the region in state-space
for which the neighboring control law is applicable, and also could lead
to excessive errors in multi-dimensional discontinuous control problems.
The mere fact that the mechanization is not entirely a feedback mechani-
zation is, of course, undesirable.

Speyer and Bryson [10], and Powers [11], did distinguish between
real time and nominal time (index~time), for the case of neighboring
optimal control of systems with continuous, unbounded control functions.
Speyer and Bryson chose t such that estimated time-to-go until the
final time is the same for both neighboring and nominal trajectories.
Powers chose t such that a weighted distance between the neighboring

current state and the nominal path is minimized. The technique of

This fact is discussed in Section 4.4.



Powers appears to be difficult to implement when the system is high-
order, whereas the method of Speyer and Bryson requires an accurate
estimate of the fingl-time, which may be difficult to obtain when noise
is present in the system. In each case, however, the mechanization of
the neighboring control law is entirely a feedback mechanization. The
"time-to-go" concept is used in the present study to choose t such that
the neighboring, discontinuous control law is entirely a feedback control law.
Finally, both McIntyre and McNeal assume that the number of switch
times and the initial control vector, for the neighboring path, are
known., Davison and Monro [12] have developed a first-order, open-
loop, iterative procedure for obtaining this information for minimum-
time control problems. The neighboring feedback control law algorithm,
described in the present paper, ascertains this information for any

type of discontinuous control problem.

1.3 Contributions

The principal contributions of this study are the following:

1. A neighboring optimal control law, valid for states neigh-
boring an optimal, nominal trajectory, is derived for systems which
possess discontinuous optimal control functions, High-order, non-
linear systems, with multi-dimensional control functions, are con-
sidered. The problem whose solution determines the neighboring
optimal control law, is reduced to the simplest form of a parameter
optimization problem, The solution of this problem is obtained by
solving a set of linear, coupled algebraic equations. This calculation
is, therefore, easily performed on a digital computer,

2. A feedback mechanization of the neighboring control law
is described. Switching functions for each component of the control

vector are derived. These switching functions are constructed from



precalculated gains, which are, in turn, a function of the nominal
time (a parameter associated with the nominal trajectory). Using

the concept of "time-to-go' (see Section 4.2), two schemes, depending
upon whether the terminal time is fixed or free, are proposed for
choosing the nominal time, These schemes enlarge the region, in
state-space, for which the feedback control scheme is applicable.
When the mechanization of the feedback control law takes the form of
a digital controller, a reordering of the sequence in which the
control-components switch is possible.

3. An open-loop algorithm, which ascertains the number of
switch times, the initial and final control vector, and the appro=-
priate nominal trajectory, is described, This algorithm is used
during the initial stages of the control scheme when the above in-
formation is not available, The algorithm is computationally simple,
and thus the associated computation time has little effect, in general,
upon the performance of the feedback phase of the control scheme.

4, The size of the region in state-space, about the nominal
trajectory, for which the control scheme gives meaningful results,
1s investigated by considering three example problems, 1In order to
give the neighboring control law a severe test, a third-order problem,
with a highly nonlinear optimai switching surface, is considered. To
demonstrate the feasibility of controlling high-order systems by the
neighboring optimal feedback control technique, a 6th-order system

with three control inputs is discussed.

1.4 Organization of Work

The specific problem of interest in this study is formulated in

Chapter ITI. The dynamical description of the system is given, and an



optimization problem is posed (Optimization Problem I). It has been
shown by others that a neighboring optimal feedback control law can~
not be derived from the solution of Optimization Problem I since exact
satisfaction of terminal constraints is required. Therefore, a second
optimization problem is posed (Optimization Problem II), which is free
of terminal constraints, and from which a neighboring optimal feedback
control law can be derived. The relationships between the solutions
of these two optimization problems is discussed in detail.

The solution of Optimization Problem II is determined in Chapter III.
The performance index is expanded, to second-order, about an optimal,
nominal path, the nominal path being determined by solving Optimization
Problem I. The control parameters (switch-time and final-time pertur-
bations) are determined by minimizing the second-order terms in the ex-
pansion of the performance index, The equations which determine the
control parameters are written in matrix form so that matrix algebra
can easily be used to solve for these parameters. The resulting solu-
tion is then used to formulate a neighboring optimal feedback control
law,

To implement the control law derived in Chapter ITI, it is
necessary to determine the number of switch times, the initial and
final control vectors, and the most appropriate nominal trajectory.

An open-loop algorithm to accomplish this is presented in Chapter IV.
The distinction between real and nominal time is discussed, and a
technique for choosing the nominal time is described. The validity
of this technique is supported by a heuristic argument and the re-
sults, obtained through its use, presented in Chapter V. The claim

that this technique is always the best technique for choosing the



nominal time cannot be made. A feedback mechanization of the neigh-
boring optimal control law is also described in Chapter IV. This
mechanization requires that one monitor, simultaneously, the appro-
priate switching function for each component of the control vector,
By so doing, one allows for the possibility of a reordering of the
control-component switching sequence.

Three example problems are considered in Chapter V. The first
two problems involve low-order, linear systems with scalar control
inputs, The last problem involves a nonlinear, 6th-order system
with three control inputs. The first problem is the minimum-fuel
settling-time problem for the 1/s2 plant., The intent of this prob-
lem is to demonstrate the use of the neighboring feedback control law
mechanization for fixed terminal-time problems., The remaining two
problems are the problem of minimum-time control of the ]./s(s2 + 1)
plant, and the minimum-time satellite attitude-acquisition problem.
These problems demonstrate the use of the neighboring feedback con-
trol law mechanization for free terminal-time problems, It is felt
that this choice of example problems gives a representative picture
of the utility of neighboring optimal feedback control.

Finally,. a summary of the basic results and conclusions of this

study is presented in Chapter VI.



CHAPTER II

PROBLEM FORMULATION

In this chapter, the class of dynamical systems considered is
defined and two optimization problems are posed, Optimization Prob-
lem I and Optimization Problem II. The nominal path, depicted
schematically by Trajectory I in Fig. 2,1, and the nominal control
law, for the initial nominal state §; , are determined by solving
Optimization Problem I. The objective of this study is to solve
Optimization Problem I for the optimal feedback control law for an
initial state X s neighboring EQ « The corresponding optimal
trajectory is depicted schematically by Trajectory II in Fig. 2.1,

In general, a neighboring optimal feedback control law for Optimiza-
tion Problem I does not exist since terminal equality constraints are
incorporated in the problem statement., The performance index of
Optimization Problem I is therefore modified, and a free end-point
optimization problem (Optimization Problem II) is posed. The solution
of this problem gives a neighboring optimal feedback control law for
initial state X neighboring E; s which is a sub-optimal solu-
tion of Optimization Problem I with initial state X - The neighboring,
sub-optimal trajectory is depicted schematically by Trajectory III in

Fig. 2.1.

2,1 System Specification

The system dynamical equations are given by
x(t) = £[x(t),u(e)] , x(t)) = x_ (2.1)

where x(t) is the (n x 1) state vector, u(t) is the (m x 1)
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Figure 2.1.

—— TRAJECTORY I
—~——- TRAJECTORY I
—-— TRAJECTORY III

Two-Dimensional Example Trajectories Depicting the Nom-
inal Path (I) , the Optimal Path Determined from Optim-
ization Problem I(II) , and the Optimal Path Determined
from Optimization Problem II (III).
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control vector, £[¢>+] is an (n x 1) wvector function, and xo is

the specified initial state vector. It is implicit in Eq, 2.1, and

is assumed in the theory to follow, that time t never appears explicitly

in the system dynamics or in the statement of the optimization problem.
This study is restricted to optimization problems which result

in discontinuous control laws, It is therefore assumed that

flx(t) , u(t)] 4is a linear function of ui(t) s L=1, *°°,m,

and that
loy)|<p, »i=1, - m, (2.2)

where Bi s 1=1, °**, m , are positive constants. It is assumed
that £[x(t) , u(t)] is at least twice differentiable with respect

], where t_. is the final

to x(t) in the time interval [t0 s t £

£

time.

2,2 Optimization Problem

The solution of the optimization problem posed in this section,
for the optimal control law for an initial state §0 s, defines the

nominal path, x(t) , Eé[fo , t and the nominal control history,

f] ?

at) , Ee[E; s Ef] « All quantities associated with the nominal

path will be indicated by a "bar" above their respective symbols.
The need to distinguish between real time along a neighboring path, t,
and nominal time, t , will become evident in Section 3.4,

The scalar performance index of interest in this study is given by

s

Tr=EEGEDD + f L[x(t), u(t)ldt (2.3)

t
o]

where F'EE(Ef)] is a scalar function of the final state and

11



LIx(t) , u(t)] , € effo, Ef] , is a scalar function of the control
and state histories., The terminal equality constraints which are

imposed upon the system are defined by
Y[E(Ef)] = 0 (2.4)

where b4 ﬁE(Ef)] is a (g x 1) vector function of the final state
and g < n . The final time, Ef , may or may not be specified. It
is assumed that these terminal constraints are such that the initial
state, for the system of Eq. 2.1, is controllable in the allowable
time specified for the problem.

Again, to insure that the solution of the optimization problem
Wili yield a discontinuous control law, it is necessary to assume
that L[x(t) , u(t)] is at most a linear function of the components
of E(E) . To insure that the optimal control law is discontinuous,
it is assumed that no singular arcs appear in the solution of the
optimization problem posed below.* Finally, it is assumed that
F'[-], Y[*] , and L[-,*] are at least twice differentiable with
respect to x(t) in the time interval [E;,EE] .

Later theoretical considerations warrant a simplification in the
performance index, J", at the expense of increasing the dimension of

the state vector. When L[x(t), u(t)] , Ee[E;, t_.] , is not identi-

f
cally zero, the state is augmented as follows:
* t) = Lx@®) , w®], x T)y=o0. 2.
% (n41) (t) = L[x() , u(®)] , % b1y (to) 0 (2.5)

See [13], Chapter 8, for a definition and discussion of singular arcs.

12



The performance index, J" , may thus be replaced by the performance

index
T = Flx(tp)] (2.6)

wher x(t =F’ [x(t X T
ere F[x(tp)] F*oIx(eg)] + x(nﬂ)(tf)
To minimize the performance index J° subject to the terminal
constraints, Eq. 2.4, the terminal constraints are adjoined to I’
with a (q x 1) vector of Lagrange multipliers, v , to form the

augmented performance index:
T=F KEHI+ VYREY] . 2.7

The optimization problem for the nominal path is thus stated as follows:

Optimization Problem I

For the dynamical system defined by
x(®) = £[x(®) , u@®]1, E('t'o) =x, (2.8)

choose a control vector, 'G(E),¥3[E0,Ef], subject to the control
constraints (Eq.2.2), which minimizes J (Eq. 2.7), and choose v

such that the terminal constraints (Eq. 2.4) are satisfied.

2.3 Relaxation of Terminal Constraints

In [6], McNeal discusses and demonstrates the fact that, in
general, a neighboring optimal feedback control law for Optimization
Problem I does mot exist for an initial state x , neighboring §; .
Along the latter stages of the neighboring trajectory, the feedback
gains of the neighboring control law become infinite. Specifically,

for a fixed final time problem, when the number of remaining switch

13



times, N , along the neighboring path is less than the number of
terminal constraints, q , the system is uncontrollable to the extent
that N control decisions are insufficient in number to satisfy q
terminal constraints. When tf is free an additional control decision
is available. For this class of problems, the system is uncontrollable
once (N+ 1) <q .

To alleviate the problem of uncontrollability, and hence insure
the existence of a neighboring optimal feedback control law, a new
optimization problem is posed in which insistence on exact satisfaction
of the terminal constraints is relaxed. The solution of the new prob-
lem for the optimal control law for an initial state X neighboring
Eo’ will be an approximate solution of Optimization Problem I with
initial state X .

‘Only approximate satisfaction of the terminal constraints will be
required in the new optimization problem.* This may be accomplished
by adding a penalty term to the performance index, J (Eq. 2.7), for
non-satisfaction of the terminal constraints, and then formulating a

free end-point optimization problem. The penalty term takes the form
K T

where K 1is a scalar positive constant and W is a (q x q) positive-
definite weighting matrix. As K increases in magnitude from zero,
the cost of non-satisfaction of Eq. 2.4 increases, and hence the com-

ponents of Y[X(tf)] are reduced in magnitude by the control law.

This approach was also followed by McNeal in [6].

14



The choice of W allows one to penalize certain components of
Y[x(tf)] , more than others, for being non-zero.

The new optimization problem, which will be solved in Chapter III
to give a neighboring optimal feedback control law for points neigh-

boring the nominal path, is thus stated as follows:

Optimization Problem II

For the dynamical system described by
x(t) = £[x(t) , u(®)] , x(to) =X (2.9)

choose a control vector, u(t), te[to,tf] s subject to the control

constraints (Eq. 2.2), which minimizes the scalar performance index¥*

3= FlE)] + v ¥Ix(e)] + 5 ¥ k(e )] WEIx(e ] (2.10)

where v 1s the (q x 1) vector of Lagrange multipliers obtained in
the solution of Optimization Problem I with the initial state EE s

and X is an initial state neighboring X .

*
The vTY['] term in the performance index (Eq. 2.10) is necessary

to insure that, to first-order, Optimization Problem I is identical to
Optimization Problem II. That is, the presence of this term insures
that the nominal control law is identical to the neighboring control
law, to first-order (see Section 3.2).

15



GHAPTER III

DERIVATION OF NEIGHBORING OPTIMAL FEEDBACK CONTROL LAW

The neighboring optimal feedback control law is determined by
solving Optimization Problem IT with an initial state X s neighboring
the nominal path. The nominal path and control law are determined by
solving Optimization Problem I with an initial state E; « Since it
is assumed that Xo is a neighboring state of §o ,* Optimization
Problem II may be solved by expanding the performance index, Eq. 2.10,
about the nominal path, and then determining the neighboring control
law in terms of deviations in the nominal control law. It will be
seen that, since the nominal path is optimal, the neighboring and
nominal control laws are identical to first-order. 1In the analysis
below, therefore, Eq. 2.10 is expanded to second-order, about the
nominal path, and the second-order terms are then minimized with
respect to the control parameters, This gives an approximate solution
to Optimization Problem II which becomes exact as deviations in the

neighboring path, away from the nominal path, approach zero.

- *% — —
The final time, tf , the final control vector, u(tf ) , N
switch times at which control discontinuities occur, and the associ-

ated control level changes, completely define the nominal control

_ It is implicitly assumed that if x, is in the neighborhood of
X, , then each state x(t), te [to,tf], is in the neighborhood of some

state X(T),te [E,,T¢] .

K em .
u(ti+) is, by definition, the value of the control vector at time

t=7%t, +e¢, where ¢ is a positive constant. This notation is used
€0 1

throughout the remainder of this work for quantities which are discon-

tinuous at time ti
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history.* It is assumed that the number of switch times along the
nominal path, denoted by N , is identical to the number of switch
times along the neighboring path. Thus, the final-time deviation
away from Ef , and the deviations in the N switch times away from
their nominal values, are the control parameters which define the
neighboring control law, Determining the optimal values of these

deviations is the objective of this chapter,

3.1 Determination of Optimal Nominal Path

The nominal path and control law are determined by solving
Optimization Problem I. It is assumed, for the present, that the
terminal time is free. Problems with fixed terminal time are dis-
cussed at the end of this chapter.

The variational Hamiltonian for the system of Eq. 2.8 is defined

to be

HXE),Z®),5® ] = VORGSO , (3.1)

where X\ (t) 1is the adjoint vector for the system. Pontryagins
"Minimum Principle™ [14] gives a set of necessary conditions for
J (Eq. 2.7) to have at least a local minimum. These necessary

conditions for optimality of E(E) are stated as follows:

ME = R©,X©® .5 1T (3.2)

M(E) = FRED] + VY XED] (3.3)

* The choice of specifying E(Ff-) instead of the seemingly

more logical quantity, E{Ed+) , will be justified in Chapter IV.
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N EPERED AEDT = 0 (3.4)

T (@ = Arg Min

i s | BR®LE®,u®] , Telt ,t,] (3.5)

Eq. (3.2)-(3.5), along with the dynamical equations (Eq. 2.8) and
the terminal constraints (Eq. 2.4), are a mathematically consistent
set of relationships that will yield an optimal control law, G;p(f) s
which will locally minimize J. Eq. 3.4 is the transversélity con-
dition and need be satisfied only when the terminal time is free.
Eq. 3.2 and Eq. 3.3 define -):(E), te [.Eo’?f] , and are the adjoint
equations for the system of Eq. 2.8, The assumption that no singular
arcs occur in the solution of this problem implies that the operation
indicated in Eq. 3.5 can be performed to yield a well defined, dis-
continuous optimal control law.

Several techniques are described in the literature to solve
this two-point boundary value problem, The solution takes the form
of a state history, E(E),Eeffo,gf], and a control history. The
control history is described by a set of N switch times, associated
step changes in the magnitude of the components of the control function,
the final control vector, and the final time. It is assumed that only
one component of the control vector undergoes a step change at a given
switch time,* The ith -switch time, associated with a step change

in 55(23 , is denoted by Eij’ The associated step change in Ej(E}

It is highly unlikely that the numerical solution of the two-
point boundary value problem will result in two control-vector com-
ponents switching at exactly the same time.

18



is defined to be

Aiuj = uj(tij —)-uj(tij +)3 i = 1,...,N; je [1’.0.’m] L] (3.6)

The N switch times are ordered as follows:

't'0 <Eﬁj <E(N-1)j < oo <Elj <Ef, jell,**+,m] . (3.7)

Hence, the first subscript of Eij indicates the number of remaining
discontinuities in the control function in the time interval [E;j,zkg .
The second subscript indicates the component of the control function
which is discontinuous at time E;j . An example control history is
illustrated in Fig. 3.1 in order to further clarify the notation in-
troduced in Eq. 3.6 and Eq. 3.7.

When specifying the sequence of nominal switch times by
Eij s =1, eoe, ﬁ; je [L,°°*,m] , it is implied that j assumes
a sequence of values which defines the order in which the components
of the nominal control function undergo step changes. This same
sequence, determined by the chosen nominal path, also defines the
sequence of values which j assumes when specifying the neighboring
switch times and the switch-time perturbations (see Section 3,2).

It is assumed, in the remainder of this chapter, that Optimization
Problem I has been solved. The following quantities are therefore con-
sidered to be prescribed: t,. , i =1 ,***,N; je[l,**°,m] ;

ij]
A, EJ. s i= 1,008 Je [1,00m,ml; Ty ulte-); x(6),telt e D5 v .

3.2 Expansion of Performance Index About the Nominal Path

Define the perturbation, ©&x(t) , of a vector q(t) to be

sa(t) =a(t) -alt) , (3.8)
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Figure 3.1. An Example Control History Which Demonstrates the Use of
the Notation Introduced in Eq. 3.6 and Eq. 3.7.
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and define the step change, Afu »*¥ of a discontinuous vector « (t)

at time t,.,, , to be
1]
e =oz(tij -) —oa(tij +) . (3.9)

This notation will be used extensively in the following theory,

The control parameters to be determined are the final-time

perturbation,

Bty = t. - T, (3.10)

and the switch-time perturbations,

6tij = tij - tij s L= 1,°+*,N; jell,"*",m] . (3.11)

These perturbations are assumed to be positive in the following ana-
lysis. The results obtained below, however, are invariant to the
sign of the control perturbations. This is true since all state and
control perturbations are assumed to be infinitesimal. Furthermore,
this assumption and Eq. 3.7 imply that the neighboring switch times

satisfy the following inequalities:

t <t= < v, <t

o <ty < EF-1yq gy <tpy <tg s fellyeoml . (3.12)

Eq. 3.12 is utilized, below, in the derivation of the neighboring

optimal control law.*%

* This notation has already been used in Eq. 3.6 for a scalar.

b It should be kept in mind that the mathematical developments

in this chapter are, strictly speaking, valid only when the pertur-
bations are infinitesimal. When the results of this chapter are
applied to problems with finite perturbations, some of the relation-
ships used to calculate the optimal control law, valid for infinitesi-
mal perturbations, are no longer satisfied. In particular, allowance
is made, in Chapter IV, for a possible reordering of the neighboring
switch times (i.e. allowance is made for possible non-satisfaction of
Eq. 3.12). 21



In this section, the performance index will be expanded to second-
order in the initial-state, the final-time, and the switch-time pertur-
bations. Writing J (Eq. 2.10) in terms of tf and Stf , and then
expanding to second-order in Sx(Ef + 6tf), the performance index may

be written
— o (T T ey re
J = F[X(tf)] + [Fx[x(tf)] + v Wx[x(tf)]] o} x(tf + Stf)
T — - T = = -
L1 o
+ & Bx (tf + Stf)[Fxx[x(tf)] + KYx[x(tf)] W\Px[x(tf)] (3.13)
T — —
+ (v ¥x(e)] )Xx] Ox(ty + Btp)
where the fact that Y[E(Ff)] = (0 has been utilized. Define the
(n x n) symmetric matrix P as follows:*
.—= — T e e — T — —
P = Fxx[x(tf)] + KYx[x(tf)] WYX[x(tf)] + (v Y[x(tf)])XX . (3.14)
Substituting Eq. 3.14 and Eq. 3.3 into Eq. 3.13 then gives
o =T~ - T — - -
J = F[X(tf)] + A (tf)6x(tf + 6tf) + $0x (tf + 6tf)P6x(tf + atf). (3.15)

Since F[E(?f)] is independent of the control parameters, it is omitted
in the expression for J in the remainder of this discussion.
The expansion of 6x(zf + 5tf) to second-order in Stf and

Bx (Ef) is written¥¥

— _—— — - — o - 2
1
6x(tf + Btf) = f(tf)Btf + [T+ £ (tf)ﬁtflﬁx(tf) + Ef(tf)ﬁtf , (3.16)

The last term in Eq. 3.14 was not obtained by McNeal (seel6],
qu 305) @

In the remainder of this paper, a function, o«[*,°], of the
nominal state and control vectors, is written o(t), i.e. £[x(t),

(B ] = I(E) .
22



where In is the nth-order identity matrix. The fact that Su(tf) =0
was used in writing Eq. 3.16,*% This fact again follows from Eq. 3.7
and the assumption that the switch-time perturbations are infinitesimal.

Now, Bx(ff) may be written

ox (t

) axI(Ef) + tx oo (?:'f) 4 oo (3.17)

where 5XI(Ef) gives the first-order terms in the expansion of Bx(ff) ,
and SXII(Ef) gives the second-order terms, The dynamical equations
which specify SXI(E) and 5XII (E), E; < t < EE , are given by Eq. A.1l
and Eq. A.6 in Appendix A, respectively. Substituting Sx(gf) , from
Eq. 3.17, into Eq. 3.16, and then substituting this result into Eq. 3.15,

J may be written, after rearranging terms,
J = [XT(E) +3CT(E YE (£.)5t +ET(?;' )Pot _18x_ (£.)
£ f7xrff £ £ 1 f
T — (= = o] - = — T — == 2
L 1
+ 2SXI(tf)Pbe(tf) + £[f (tf)Pf(tf) + A (tf)f(tf)]ﬁtf (3.18)
+IT('E)ax (t.)
£ 771 2

where terms higher than second-order have been omitted, and Eq. 3.4
was utilized to eliminate the XT(EE)f(Ef) term,

The perturbation, 5xI(E), is the first-order solution of the
first-order perturbed dynamical equations., These equations, between

nominal switch times, are written

Bx(T) = @@ + T ©0 u®); T = & - (3.19)

¥ From Eq. 3.8, Su(tf) = 0 implies that G(Eé) = u(tf) . Hence, it

is necessary to choose a nominal path such that G(Ef) = u(tf) in order

to mechanize the results of this chapter (see Section 4.3).
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To solve Eq. 3.19 for ©®x(t), the fact that ‘Eij + Bt

i3 < “@-y

i=2,-°2,N; je [1,-+-,m}, and t,, + Bt_, <.Ef, j e [Lye*+,m], is

1j 13

utilized. These inequalities are again a consequence of Eq, 3.7 and

the assumption that the switch~time perturbations are infinitesimal.

From Appendix A, Eq. A,5, the first-order solution of Eq, 3.19 for

ax(‘Ef) is*

N
ésxI (tf) = @ (tf,to) 6x0 + 2 <I>(tf,tij) Aifétij
i=1

where &(+,°) 1is the state transition matrix for Eq. 3.19.°
Note that @(EE,E) satisfies the adjoint equations for the
system of Eq. 3.19:
@(tf,t) = . @(tf,t) fx(t).

Also, recall from Eq. 3.2, that X(E) satisfies

Zr — T_ - _
A () = - x(t)fx(t).
-T —
Thus, A (t) may be written
T — -7 — - =
A (E) = A (tf)cb(tf,t).

Using Eq. 3.23, Eq. 3.20, and the definition of the Hamiltonian

(Eq. 3.1), one obtains the following results:

N
N (Eyox (B = T (E ek + ) Afist, =% (E)6x
MO (Eg) = M(E ) 8%, {1085 = M (£)0x,
i=1
. ,

it is hereafter understood that j, in the sequence tij s

i= 1y°°,N, assumes a sequence of values defined by the nominal

path, and hence the notation j ¢ [l,°-*,m] will be omitted.
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The last equality is valid since the nominal path is optimal and
hence Ai H= 0, i = 1,-'°,ﬁ . Thus KT(Ef)éxI(Ef) may be omitted
in Eq. 3.18 since this term is independent of the control parameters,

Now, using Eq. 3.1 in Eq. 3.18, and using the fact that

f(tf) = fx(tf) f(tf) s (3.25)
J 1is rewritten as
_— - SO - T o = -
J=[H (t) + £ (t)P] bx (tp)bt, + yxl(tf)PaxI(tf) (3.26)
e = = = 2 T~ -
+ 3[£ (tPE(EL) + Hx(g;f)f(tf)]fstf + A (t)dx o (ty) .

From Appendix A, Eq. A.18, the ith-component of 6XII(Ef) is given by

te
i — _ 1
GXII (tf) - B

) ——

n
E: ®ij(Ef,T)6X¥(T)E§X(T)6XI(T)dT (3.27)
i=1

[o]
N

+ [z {cp(?f,'t—kj) [Ak?xéxl(?kj)atkj + %(- ?X (Ek’;)ak't’ + Ak?x'f'(Eka)> ) tij ]} ]i ,
k=1

where, from Eq. A.4 in Appendix A, 6XI(E£j) is given by

N
re = r Tt .,t. . )A,. Tst k=1,+-+,N . 3.28
6xI(tkj) o) (tkj,to)6x°+z o ( Ky’ iJ)Al i3’ > ( )
i=k+1

It follows from Eq. 3.28 that
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D1 21

) = o(t,t t,t st .,
6xI(t) @(t,to)axo + o(t i )Ai .

k| ij

1=k

rrl
A
ot]
INA

E(k-1), k =

1
N
M
.
-
2|
-

(3.29)

Finally, substituting Eq. 3.27 into Eq. 3.26, and making use of

Eq. 3.23 and Eq. 3.1, the performance index is written

-
I

- [E (o + ET(Ef)Ejst(Ef)atf + % 5x£(2f)§6xI(Ef)

T - —_ — - -
+ % [f (EIPE(EL) + Hx(tf)f(tf)]6t§

€, N (3.30)

+
Wl

e (e (nar+ ) [nF e er
t

k=1
o

+ 1 (.ﬁx(EkJJf)AkE + Akﬁxf(-gk':j)) 6t§j 3.

The integral term in Eq. 3.30 is derived in Appendix B, Eq. B.l.
In the following sections, J, as it appearsin Eq. 3.30, will

be minimized by choosing optimal values of 6tf and étij )

i= 1,'-',ﬁ » It should be noted that each term in Eq. 3.30 is of

second-order in the state, the switch-time, and the final-time per-

turbations, This means that, to first-order, the neighboring optimal

feedback control law is identical to the nominal control law, This

follows from the fact that the nominal path is optimal, and the fact
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that the first-order necessary conditions of optimality for Optimization

Problem I are identical to those for Optimization Problem II.

3.3 Calculation of Final-Time and Switch-Time Perturbations

The performance index, J , as it is expressed in Eq. 3.30,
is a function of th, 6tkj’ k=1,""",N, and prescribed quantities
defined by the nominal path. When 6XI(EE) (Eq. 3.20), GXI(Ekj)’
k=1,""-,N (Eq. 3.28), and axI(E),Ee['Eo,'t'f] (Eq. 3.29), are
substituted into Eq. 3,30, the functional dependence of J upon the
control parameters is explicit. The control parameters are constraint-
free. Thus, Optimization Problem II is reduced to the simplest form
of a parameter optimization problem,

The control parameters are, therefore, determined by solving a
set of (N + 1) algebraic equations obtained by differentiating J

with respect to 6tf, 8t k=1,***,N, and equating to zero. The

ki’
resulting control law necessarily gives J a stationary value. To
insure that this stationary value is a minimum, the matrix of second
partial derivatives with respect to étf,étkj, k = 1,"',ﬁ, must be
positive-definite. Since the nominal control law is minimizing,
this sufficiency calculation will in general not be necessary. It
is conceivable, however, that a neighboring control law could give
J a local maximum value. This problem is not considered in this
study, and thus the sufficiency calculation is omitted.

From Eq. 3.20, Eq. 3.28, and Eq. 3.29, it is seen that 6XI(Ef),
b (£ 1)

étf . Differentiating J with respect to étf and equating to

k=1,--+,N, and 6XI(E),Ee[E;,E£], are independent of
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zero thus gives

33 - = T TN T (T IPE
S&f: [, () + £ (ePlox (t) + [E (£ )PE(

£

+ Ex(’t'f)'f'(’t'f)]stf =0

Define the (1 x n) vector M to be
M= [EEOPEE) + A (ENFED]Y [H (E) + (t,)P]
f £ x- £ £ x+ £
Then, solving Eq., 3.31 for th gives

Bt = -Mﬁxl(tf) .

Now form N equations, to determine 3t k=1,%-,

kj’
by equating to zero the derivatives of J with respect to

k= 1,°¢,N:

ddox. (L)
3 _ T T =T — .= T — .= 1\°f
3wt o [H ()t + £ (E)PBEL + BX[(E)P] | <
J kj
t
J——ljf faT YH__(1)8%. (7)d
+aatkj2 | O (MHE (1B (1)dr
t

o

— — pa—, — + p— — ——
+ AKHXSXI(tkj )+(-Hx(tkj)q(f + %{fo(tkg))ﬁtkj

N -
o 3dx_(t..)
= N AP A = =1 see N
+ ZA&HX ot Bt . = 0, k= 1,-0,N.
=1 4

Differentiation of Eq. 3.20 with respect to 6tkj’ k=1,°"""
aﬁxl(zf) _ _ _
ng'l;-‘-‘ = @(tf,tkj)Akf, k=1, ,N,
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. (3.32)
(3.33)
N,
atkj 9
(3.34)
,ﬁ, gives
(3.35)



and differentiation of Eq. 3.28 with respect to 6tkj’ k=1,-+,N,

gives

3dx. (€, .)
L % | - - - - ;!
Bty 5 ot e PAL k> 1

a&xl(ti.)

ot = » k< i

kj

The second term in Eq. 3.34 is evaluated in Appendix B and given by
Eq. B.6. Now substitute Eq. 3.33, Eq. 3.35, Eq. 3.36, and Eq. B.6 into

Eq. 3.34, and rearrange terms:

[@(Ef,Ekj)Ak’f]T [F-E}T{(Ef)ﬁ-if('{f)ﬁ]axl(Ef)

k t .
+ 2 J_ [@(T,tkj)Akf] H_(T)[0(r,t )8x
=20 Y

te _ e B
+j [q)('r’tkj)Aka B (T)[e(r,t )ox

t .
1]

N
+ z db(rr,tij)Aifatij Jdr
i=p

O,y 5 )Aif&:ij]d'r
1

+
'-I;.M =

— -— — — + — —— e -
+ AkHXBXI(tkj )+(-HX(tkj)AKf + Akaf(th.))stkj

k-1
Al —n — — — o

+ ZJ A&HXQ(t&j,tkj)%f8t£j= 0, k=1,+-+,N, (3.37)
=1

Since Btf has been eliminated, Eq. 3.37 represents N linear,
coupled equatio?i for the N control parameters Stkj’ k=1,°°°,N,
To solve these N equations for the control paraméters, they will
first be written in matrix form. To accomplish this, the following

notation is introduced:
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- -
S5t .
1]
ats = (3.38)
t—
RETH
T = B-HL(E)M-BECE O

- x £ £ (3.39)
T(E,.,£.,) = o(t..,t. )AF .

( ij &J) ( ij’ &J) 3 (3.40)
R(t,.,t .) = [T(t,,,t,.) *= T(t,.,t,. .

( i] &J) [T ij lJ) ( ij LJ)] (3.41)
w(t,.,t,.) = AHET(E,.,t,. .
5%y = AR Cap iy (3.42)
— - _+ — ——— -

h( 13) = Hx(tij)Aif + Ainf(tij) (3.43)
t .
(i-1)]
T(t "~ = _-T T e P F '= s 00 N
‘E(tij,t{j) -I T (T,t{j)HxX(T)Q(T,tf)dT, i=2, ,N (3.44)
t, .
ij
e
E(E ..t )=I TN (r, T )E (1)0(T,E)d (3.45)
1j2 /Lj ‘—'— T; Lj KX T T, f T e
t .
1j
Using this notation, BXI(Ef) is written (see Eq. 3.20)
SXI(tf) = @(tf,to)axo + R(tf,tﬁj)ﬁts (3.46)
and AkaaxI(tkj) is written _
N
HXBXI(tkj) = AkHX@(tkj,to)Sxo + j; EHCINLIe (3.47)
' i=k+1

Substituting Eq. 3.46 and Eq. 3.47 into Eq. 3.37, using the above
notation, using the properties of the state transition matrix, and

rearranging terms, then gives
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k N
+ j; E(t{j,th) }Z T(tf,t
=1 i=¢,
N
+ h(th)atkj + }Z w(tkj,tlJ
i=k+1

Finally, the following notation

Eq. 3.48 in matrix form:

h(tij) w(tlj,tzj)
X = . .
-w(tlj’tﬁj) w(th’tﬁj)

=
i
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(tf,tkj)U + AkHXQ(t J_,tf) + E; E(ti.,tkj)]Q(tf,to)Sxo

]

(3.48)

is introduced in order to write

LI ) w(tlj,tﬁj)
. (3.49)

.. w(

(3.50)



=1
7 = . (3.51)
N
BT, T
EZ ( 23 NJ)
=1
0 oo L)
J = — e - - N (3.52)
¢ !
O 1TN-p1)
€ N ?
- -
E(t1 ,tlj)R(tf,tﬁj)Iﬁ
2

— S m - — -—— -

Y = E(t .,t. . )R(t_,t=.)J .
L («LJ 23)(f NJ>L (3.53)
=1
N

E(t ,,t= )R(t_,t=.)J
( 2 NJ) (te NJ) .
=1 |

Using the above notation, the N equations in Eq. 3.48 may now be

written in the following compact form:

= = === = =T = = | === = =
vom + — = 3.54
[R (tf,th)U+D+Z]®(tf,to)6xo[Y+R (tf,th)UR(tf,tﬁj) + XJpt = 0 . ( )

Solving Eq. 3.54 for Sts gives

= =T = — === - ==1-T - — === - =
- _ - _ — 3.55
B, [Y+R (tf,th)UR(tf,th) + X1 "[R (tf,th)U+D+Z]®(tf,to)8xo. ( )
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Substituting Eq. 3.46 into Eq. 3.33, 6tf becomes

6tf = -M<I>(tf,to)5xo -MR(tf,tﬁj)StS. (3.56)

The above theory applies to free terminal-time problems. When

t is specified, &t_. = 0, and hence M=0. If U is replaced by

£ £
P (see Eq. 3.39), then Eq. 3.55 also gives the switch-time perturbations
for fixed terminal~time problems.

When the system dynamics are linear in the state, as well as in

i

the control, then E(',-) = 0 since Hxx(t) 0, te[to,tf]. Thus

Z=0 and Y = 0. Also, Aiﬁ% = 0, i=1,---,ﬁ, and hence D = 0 and

il

Wi ,*)

0. For this system, the finmal-time perturbation is given by

Eq. 3.56 and the switch-time perturbations are modified to become:
8t = ~[RL(Eny b, )UR(Er 5= )41 T RE(T,, E=.)U0(E,,E )8% (3.57)
s £’ Nj £°7Nj £2°Nj £’ 0" "0 :
where V 1is defined to be
LEHa T 0 ]
x" 1] Aﬁ

(3.58)

<
I
t

-

—— — + —
0 HX(tﬁj)Aﬁf_J

Note that the coefficients of @(Ef,Eo)Sxo in Eq. 3.55 and
Eq. 3.57 are completely defined by the nominal path. They can,
therefore, be precalculated, and then applied to any initial state
X s neighboring Eé' The neighboring optimal feedback control law
for the dynamical system of Eq. 2.1 is derived from the results of this
section in the next section. Implementation of this control law is

discussed in Chapter 1IV.

33



3.4 Neighboring Optimal Feedback Control Law

Denote the number of switch times along the neighboring path by

* —_—
N. Define the (N X n) matrix, GN’ to be
G =[TRT (T, T )UR(E., T K] L TRAEL, E. )THDHZ], N=1,2,++,N
N £’ Nj £’ Nj : f? Nj ]’ T sl s Ny
'G'N = 0, N=0, (3.59)

and define the (1 x n) matrix, go, to be

8y = [M-MR(tf,th)GN], N=0,1,--,N. (3.60)
Then, from Eq. 3.55 with N replacing ﬁ, 6ts is written

Sts = -GN@(tf,to)Sxo, (3.61)
and, from Eq. 3.56 with N replacing ﬁ, d5t,. is written

£

Stf = -go¢(tf,to)6xo. (3.62)

Define the neighboring switch-time vector to be

- -
tlj - to
t2j - tO
t, = . . (3.63)
o th ) to—J
* The total number of switch times along the nominal path is N.

If N<N, then N is interpreted to be the number of remaining
switch times along the nominal path, when used, instead of N, in the
calculations of the previous sections. Recall that, in these sectiomns,
it was assumed that the number of neighboring switch times is identical
to the number of nominal switch times.

34



Then, using Eq. 3.8, Eq. 3.61, and Eq. 3.62, the open-loop estimates
for the switch times and the final time, for the neighboring path,

are given by

£ = ES - ENcp(Ef,Eo)[x(t°>-§(Eo)], (3.64)

et = 'Ef-Eo-'g'oq>(Ef,Eo)[x(co)-E(Eo)] . (3.65)

The closed-loop estimates for the switch times and the final

time, for a neighboring path with current state =x(t), are obtained

from Eq. 3.64 and Eq. 3.65 by replacing t, with t and t, with

-k

t 2
t =t -G .o(t.,0)[x(t)-x(t)] , ¢t < t< bty
s s N £ (1) Nj (3.66)
t(M1)J< FS fyy o
temt = temt-g Ot )Ix(E)-x(E)] 5 gy < B < tyy s 3.67)

"aw1)3 < 5= g

where t replaces to , and t replaces to ,» in the definitions
of ts and Es , respectively. The need for distinguishing between
real time, ¢t , and nominal time, t , i1s apparent in Eq. 3.66 and
Eq. 3.67. The determination of t is discussed in Chapter IV,

The neighboring optimal feedback control law is stated in terms

of Eq. 3.66 , Eq. 3.67 ,and the step changes in the nominal control

law (Eq. 3.6):

are defined to be ¢t and

and t(N+l)j 0

When N =N, t(N+1)j

t. , respectively.

0
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Neighboring Optimal Feedback Control Law

Let N be the number of switch times along the neighboring
path. When ¢t = tij’ ie[l,°**,N], as determined from Eq. 3.66,
5 t = tij' When ¢t = tf, as
determined from Eq. 3.67, then u(t) = 0, t 2t

th (E) = u,(t,.) - AT
en uJ() J( iJ) 3

f'
An algorithm, which mechanizes this control law, is presented in the

next chapter,
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CHAPTER IV

IMPLEMENTATION OF FEEDBACK CONTROL LAW

In this chapter, an algorithm is developed which implements the
neighboring optimal control law derived in Chapter III. The main fea-
tures of this algorithm are the determination of the nominal time and
the use of the open-loop control law to choose the correct feedback
gains. The "time-to-go" concept of Speyer and Bryson [10] is used
to choose ¢t , and the oper-loop control law is used to ascertain the
number of switch times and the initial control function for the neigh-
boring path.

The neighboring optimal control law was derived by assuming that
the staté and switch-time perturbations are infinitesimal. The follow-

ing inequalities are a consequence of this assumption, and were utilized

in Chapter III to derive the neighboring optimal control law:

to <ty tameny S T S gy < By <tp s Je [1,***,m] , (4.1)
Epy T 8L <ty 0 i= 2,2, N, (4.2)
byt oty < g (4.3)

Since the neighboring control law will be applied to states which are
a finite distance from the nominal path, the switch times and switch-
time perturbations for the neighboring path will, in general, not

satisfy the above inequalities. This situation is illustrated in Fig.
4.1 by a neighboring control history which violates some of the above
inequalities. The mechanization of the neighboring control law must,
therefore, be designed to account for possible non-satisfaction of

Eq. 4.1 - Eq. 4.3 .
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4.1 Switching Functions Based Upon Nominal Time

The number of remaining switch times along the neighboring (and
nominal) trajectories, in the time interval [t,tf] , has been denoted
by N . The total number of switch times, in the time interval
[Eb,E%] s, along the nominal path, has been denoted by N . To mechanize
the neighboring control law it is necessary to assume that the maximum
number of neighboring switch times is less than or equal to E . That
is, N ¢ [0,1,°°°,N] .

For each possible value of N , the matrix of gains, Eﬁ s, can be

calculated from Eq., 3.59 . These gains are used to calculate the current

estimate of the neighboring switch times (see Eq. 3.66):

£t =t - 'G'Ncp (Ef,‘t') [x(t) - x(€)] iy SESE (4.4)

.._NJ’

t . <t <t .
(M1 = 'Nj

Designate the Nth -row of Eﬁ by &y Then, from Eq. 4.4, the Nth-

switch time for the neighboring path is given by

by = €+ byt T gD () - x(®)] ¢

From Eq. 3.60 and Eq. 3.67 , the final time is given by

- T - MO(T..T - %(t <t<t
te t+tf t <I>(tf,t)[x(t) x(t)] ,tj < s

(4.6)

Now define ij(t’E) and Sf(t,Eb as follows:
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Sy(Es0) = By € - B@(e,0) (x(E) - x(B)] , N= 1,008 5 j ¢ [1,+-,ml,

Nj t(N+1)j <t< th ) (4.7)
Sf(t,t) =t -t - M@(tf,t)[x(t) - x(t)], t1j< t < tg, t1j< t<te, (4.8)

Substituting Eq. 4.7 and Eq. 4.8 into Eq. 4.5 and Eq. 4.6 , respectively,

one sees that SNj(t,?) and Sf(t,E) have the following properties:

S, .(t_.,t) =0, SNj(t;E) >0 for t < ¢t

NJ NJ 3 N = 13.“’N 3 (4'9)

Nj

Sg(te,t) =0, Sf(t,E) >0 for t < t (4.10)

f L]
- th . . . .th
Thus, SNj(t,t) is the N -switching function for the j -component

of the control function, and Sf(t,E) is the final-time switching function.

Nuj’t z_th s

and when Sf(tf,E) =0, then u(t) =0, ¢t Z‘tf . Note that since

That is, when SNj(th,t) = 0 , then uj(t) = uj(th)-A

ij(t,E') , N=1,"*, N, is linear in the state, x(t) , the switching
surface defined by the neighboring control law is simply a linear
approximation of the nominal switching surface at the nominal switch
points.

The switching functions, defined by Eq. 4.7 and Eq. 4.8 , are
utilized in Section 4.4 to mechanize the neighboring control law,
They are, however, a function of the nominal time as well as of the
neighboring state, =x(t) . Thus, a technique for determining an appro-
priate nominal time must first be specified. This is the subject of the

next section.
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4.2 Choice of Nominal Time

The choice of t is somewhat arbitrary. When calculating the Nth-

switch time, the only restriction upon this choice is that t lie in

the interval (§N+l)j,2ﬁj] . The best technique for choosing t is,

in general, dependent upon the particular application of interest. The

concept of "time-to-go" is used to determine an appropriate t in this
study.
This concept may be applied by two different techniques:

1) Choose t e (t such that the time-to-go until

(1) 3° !

the final time is the same for both neighboring and nominal paths.

That is, choose ¢t such that

tem b=ttt t(N+1)j< t < th s t(N+1)j< t < th s (4.11)

where tf is the predicted final time for the neighboring path.

2) Choose t € (E. t,

Nj] such that the time-to-go

(M1);5°

until the next switch time is the same for both the neighboring and

nominal paths. That is, choose t such that

t..- £ =t .-t <t<t

. , t .12
Nj Nj (1) § (4.12)

<t<t

Nj > F(w) Nj °

where th is the predicted value of the next switch time for the

neighboring path.

Two classes of problems should be considered: fixed terminal-
time and free terminal-time optimization problems., A basic distinction
between these two classes of problems is the following: The optimal
switching surface, in state-space, for a fixed terminal-time problem

is a function of the initial state of the system, whereas the optimal
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switching surface for a free terminal-time problem is invariant to
the initial sfate of the system.

It is conjectured that the first of the above techniques for
determining t is most appropriate for fixed terminal-time problems,
whereas the second technique is most appropriate for free terminal-
time problems. When the switching surfaces for the neighboring and
nominal trajectories are identical, as is the case for free terminal-
time problems, it seems reasonable to expect that the neighboring and
nominal trajectories will possess similar characteristics with respect
to their switching surface. Choosing t by. the second technique
described above insures that this is the case. When the switching
surfaces for the neighboring and nominal trajectories are different,
as is the case for fixed terminal-time problems, a similarity between
the two trajectories, with respect to their respective switching sur-
faces, should not be expected. For fixed terminal-time problems, there-
fore, it seems more reasonable to choose t by the first technique
described above,

It is emphasized that the above discussion is merely conjectural.
The ultimate test for determining the most appropriate technique for
choosing t is a simulation of the particular problem of interest.

For the example problems considered in Chapter V, the conjecture proved
to be correct. Hence, the procedure for determining t described above
will be adopted in the remainder of this study.

Finally, it should be noted that choosing t by the first tech-
nique is particularly appealing when the terminal time is fixed, since

estimation of the final time, tf , is no longer necessary. Also, for

free terminal-time problems, the second technique for determining ¢t
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is more appealing since one only needs to estimate the next switch time,

t.. , instead of the final time, t

Nj £

4,3 Choice of Nominal Path

The proper choice of the nominal path is essential in order to
insure the success of the neighboring control scheme. In Chapter III,
the terms higher than second-order, in the expansion of the performance
index, were dropped. It should be expected, therefore, that the neigh-
boring control law is nearly optimal only when these higher-order terms
are small compared to the second-order terms. Hence, when using the
neighboring control scheme, the perturbations in the state should be
kept as small as possible.

To accomplish this, one should choose a nominal trajectory which
lies within the region of expected initial states of the system. This
is the primary guideline for choosing a nominal trajectory. If the
region of expected initial states is large, it would probably be necess-
ary to generate multiple nominal trajectories, and corresponding con-
trol laws, each assigned to control a particular region in state-space.
The size of these regions, and the number of nominal trajectories required,
would depend upon the particular application , and would have to be deter-
mined by a problem simulation.

In addition to these considerations, the nominal trajectory must
satisfy two further requirements. The first was mentioned in Section
4.1 , The number of switch times along the nominal path must be at
least as large as the maximum number of switch times expected along
a neighboring path. In most applications, one would have to perform a
simulation in order to determine an appropriate value for N .

The second requirement is based upon an assumption made in the

derivation of the neighboring control law. In Section 3.2, it was
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assumed that u(tf) = E(Ef) . OSince the number of remaining neighboring
and nominal switch times is identical, satisfaction of this condition
insures that the feedback gains, utilized along a given segment of the
neighboring trajectory, are associated with the corresponding segment

of the nominal trajectory. This requirement can be satisfied by again
generating multiple nominal trajectories, each having a final control
vector matching that of the expected initial states of the system.

The final control vector, u(tf) » for a given initial state, and hence
the correct nominal trajectory and control law, can then be determined
from a simple algorithm which utilizes the open-loop neighboring control
law derived in Chapter III, This algorithm, along with a complete de-
scription of the mechanization of the neighboring feedback control law,

is presented in the next section.

4.4 Neighboring Feedback Control Algorithm

In this section, an algorithm is presented which mechanizes the
neighboring control law derived in Chapter III, Initially, it is
assumed that the terminal time is free. The algorithm for free terminal-
time problems is modified to handle fixed terminal-time problems at the
end of this section. It is assumed that N < N , Wwhere an appropriate
N has been determined by an analysis of the problem and system dynamics.
The number of switch times, N , the initial control vector, u(to) s
and the correct nominal path are assumed to be unknown. If any of this
information is known, for a particular application, the appropriate steps
in the algorithm are deleted.

The first phase of the mechanization involves the determination of

the number of switch times, the initial control vector, and the correct
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feedback gains. This is essentially an open-loop procedure and requires
a finite amount of computation time. In the description below, it is
assumed that these computations are performed in negligible time. 1In
practice, one would measure the present initial state, x(to) , and

predict the future state, =x(t, + tc) , Where t. is the estimated

0
computation time required for this phase of the mechanization. All
calculations would then be based upon x(t0 -+ tc) instead of x(to) .
The magnitude of tc is dependent upon the particular application, and
reduces in size when information regarding N , u(to) ., Or u(tf) s
is available., For the applications considered in Chapter V , tC is
very small compared to the total operating time of the control scheme.
Hence, at least for the problems considered in this study, the open-
loop phase of the control law mechanization does not seriously impair
the overall performance of the neighboring control scheme.

The following data are precalculated and stored in the computer

for use in the open-loop phase of the mechanization: the initial

neighboring state, x(to) ; the sets of gains, Gi. and gb , 1= 1,¢¢¢,N,

for each nominal trajectory; the switch~time vector, tS , the final

time, tf , the control level changes, A iEj s 1 =1,°"", ﬁ, and the

final control vector, E(E&) , for each nominal trajectory ; the state

history, ;REB s Ebg,E’g Ef , and the state transition matrix history,

@(Ef;E) s EbS-E < Ef , for each nominal trajectory.* It is assumed that

number of available nominal trajectories is sufficient to insure that

Instead of storing E(E) and @(Ef,g) , Ebg t < E£

more expedient to integrate_the defining dynamical equations to deter-
mine a desired value of x(t) or @(tf,t) , t ¢ [to,tf] . This was the

, it 1s usually

procedure which was followed in the examples of Chapter V.
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at least one nominal trajectory has a final control vector equal to
the optimal final control vector for the neighboring initial state.
The open-loop phase of the neighboring control law mechanization,

for free terminal-time problems, is now stated as follows:

Open-Loop Phase of Mechanization for Free Terminal-Time Problems

Step 1. Set t = tO , £ = Eb , and N° = N , where N~ is an

integer constant. Choose, arbitrarily, one of the available nom-

inal trajectories which lies in the region surrounding x(to) .

Using the gains, GN’ and gb , associated with this nominal tra-

jectory , calculate tS and tf using Eq. 3.66 and Eq. 3.67, re-
spectively

b, = tg - GN,CD(tf,t)[x(tO) - x(8)] (4.13)

te =t + tf— t - gOCD(tf,t)[x(tO) - x(t)] . (4.14)

Step 2. 1If ¢t , as determined by Eq., 4.13 with N =N,

N-j
is negative, set N~ = N -1 and repeat Step 1 using the same nom-
inal trajectory (i.e. use Ekﬁ—l) , and the corresponding gb ,

to calculate ts and tf ). Continue in this manner until thf> 0
t,+...< 0 for some integer N~ g N .
(1) ] ’ 8

Step 3. Choose t such that time-to-go until the next switch

and

time is the same for both neighboring and nominal trajectories

(see Eq. 4.12):

(4.15)
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Then, substituting Eq. 4.15 into Eq. 4.13, recalculate tyos * Con-~
J

tinue this procedure, using Eq. 4.15 to determine t and then re-
calculating tN’j , until (tN,j)NeW is, to within any desired

numerical accuracy, equal to Then compute

(tx-1014 En+1)g
If t(N'+1)j> 0 , revaluate N to be N’ = (N’)Old+ 1 , and then

continue the calculation. If, during this calculation, tN'j becomes

negative, revaluate N° to be N’= (N7) 1 ,and then continue

0ld"
the calculation.*

Step 4. Calculate tg and tf by substituting t and N~

determined in Step 3, into Eq. 4.13 and Eq. 4.14. Evaluate N to

3

be the number of components of tS which lie in the interval

[to,tf] . The neighboring initial control function, u(to) , is
given by E’(E}, where E’(‘) is the control function for the
arbitrarily chosen nominal trajectory. The neighboring final control
function, u(tf) , is determined from E’(E&) and Aiall, i=1,
e+, N ~ N, by repeated use of Eq. 3.6k%

Step 5. Choose a new nominal trajectory, with final con-
trol function E(Eé) , such that G(E£)= u(tf) .

Step 6. Set N’= N and repeat Step 3, using the gains
associated with the new noéinal trajectory. Then check to see if
th> 0, t(N+1)j< 0 , and t1j< tf . If, in fact, these inequalities
are satisfied, it is conc¢luded that N 1is the number of neighboring
switch times, and that the gains, E; and gb , i =1,°°+,N,

associated with the new nominal trajectory, are the

*

For the examples considered in Chapter V, convergence to tN" and
N° was always accomplished in less than 11 iterations with
|(tN’j)New-(tN’j)Old‘S-'02 . On the average, only 5 iterations were required.
*%

If N = N, then u(t_.) = G’(E ) , and the chosen nominal path is

appropriate for the given Initial state.
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feedback gains appropriate for initial state x(to). 1f, however,
these inequalities are not satisfied, one simply revaluates N and/

or chooses .a new nominal trajectory by repeating Steps 3-5.%

Finally, calculate tg and tes using N° = N and the nominal time,

t, determined in Step 3. This completes the open-loop phase of

the neighboring control law mechanization.

The number of neighboring switch times ,N, the appropriate set
of feedback gains, Ei and gb, i = 1,e+, N, the initial control vec-
tor,u(to), and the step changes in the control function, Aigj s
i=1,""", N, are now considered to be prescribed, having been deter-
mined by the above open-loop algorithm. The switch-time vector, >

and the final time, t_. , calculated in Step 6, define the open-loop

f

control law for the initial state x(to). This is true since it was

assumed that t = t0 in all of the above computaﬁions. Knowledge of the

open-loop control law is utilized in the feedback mechanization of the
neighboring control law, to be described below.

For free final-time problems, t o= Eﬁj at the Nth-neighboring

switch time (see Eq. 4.12), and t = tf at the neighboring final time.

The N switching functions for the N neighboring switch times, and the

final-time switching function, may thus be written (Eq. 4.7 and Eq.4.8):

S (t,t. ) = -g o(F_,t,. £)-x(t. )], L =1,+«,N, 4.16
((BE, ) = B0 PR, D), 1 (4.16)

*
This calculation was not performed in the example problems of

Chapter V since the inequalities were always satisfied.
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t

S (t,tf)

¢ = - M[x(t) - x(tp)] ¢

TRAESE (4.17)

- th
Hence, when Sij(t’tij) = 0 , the j -component of the neighboring

control function switches discontinuously, and when Sf(t,zf) =0,
the neighboring control function switches off.

Since the neighboring control law will be applied to states which
are a finite distance from the nominal trajectory, the mechanization
of the control law must allow for a possible reordering of the switch

times.* That is, for two control components, uj(~) and uj,(o) ,

j# j° , with nominal switch times related by E€j< Ei’j' s i>1i"

the mechanization must allow for the possibility that the neighboring

switch times are related by ti,j;< tij s, 1> 1" (see Fig. 4.1) .
Allowing for this possibility, the feedback phase of the neigh-

boring control law mechanization is described as follows:

Feedback Mechanization for Free Terminal-Time Problems

. : = S t 2 e S
Monitor the functions Sil(t’til) ’ iz(t, iz) , ’ im(t,tim) 5
iegl 1,°+°,N] , where each Sij(t,zgj) is the switching function
.th
for the next switch time for the j -component of the control
function. When any one of these switching functions becomes

- 3 'th . 0 - -
zero, say Si’j’(t’ti’j’) ,» then the 1 -neighboring switch time,

s i” 1,°¢+,N is determined, and u,.(t £E>t....
tlJ’ 6[, ’]s ’ J()’ "“l_'j’

* 3 . >
An example, in which a reordering of the switch times occurs -s

presented in Section 5.3 .

49



becomes (see Eq. 3.6)

u,L(E) =u, L (ESL)) - AU, s >t L, . .
(0 = (e ) - AL (4.18)

'(t’til'j'

)

After time t,... , replace S,.,.(t,t....) b S
jog" > TeP 13(’13) Y Siny
i < 17 , in the sequence of switching functions being monitored,

where ’(t’ti"j’) is the switching function for the next switch

S, .
i _]
time, after ti’j' » for the j'th-canponent of the control function.

After all N switchings have occurred, monitor Sf(t,E}) . When

Sf(t,Ef) becomes zero, set u{.) = 0 , thus terminating the control

scheme.

This phase of the mechanization of the neighboring control law

results in a feedback control scheme since Sij(t,E Y , i=1,+,N,

ij
and Sf(t,Eé) are functions, only, of the state, x(t) , and prescribed
quantities associated with the nominal trajectory. Caution must be

used when implementing this control scheme, however, since the switching
functions are, in general, not monotonic functions of real time ¢t . That
is, as t 1increases from to » the switching functions may pass thru zero
several times before actual switching is supposed to occur. From Eq.

4,16 , Sij(t’gij) is a valid switching function only when t(i+l)j <

t S'tij . This restriction on t is a consequence of the assumption
that the state perturbations are infinitesimal. Since finite state
perturbations will be allowed, t need not satisfy this inequality. If,
however, t is far removed from the time interval [t(i+l)j ’ tij] s

one can no longer expect that Sij(t,Eij) will possess the properties of

a switching function (Eq. 4.9).
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This problem is circumvented by utilizing the open-loop switch-
time vector, tS s calculated in the open-loop phase of the mechanization.
This vector gives the approximate switch times for the neighboring
control law, and will usually indicate the actual ordering of the
neighboring switch times. Provided that Sij(t,zij) s 1= 1,°°+, N, are
well behaved functions (which was found to be the case for the problems
considered in Chapter V), they will satisfy the properties given in
Eq. 4.9 when t is "reasonably close" to tij' Hence, by monitoring
Sij(t,zij), i=1,"*", N, only after t is '"reasonably close" to the
open~loop switch time, tij’ one insures that Sij(t’Eij) is, in fact,
the switching function for the switch time tij' Defining "reasonably
close" must be done by a problem simulation. At least for the problems
discussed in Chapter V, it was found that one could safely monitor

(t,

Sij tij),i =1,°"", N, well before the associated open-loop switch
times. This completes the description of the feedback mechanization
of the neighboring control law for free terminal-time problems. A
block diagram of this mechanization is shown in Fig. 4.2.

The control law mechanization for fixed terminal-time problems
differs from that for free terminal-time problems in the choice of the
nominal time. Since tf = Ef, Eq. 4.11 indicates that t =t is the
appropriate choice for the nominal time. The resulting modifications

in the above mechanization, made necessary in order to handle fixed

terminal-time problems, are now presented:

Open-Loop Phase of Mechanization for Fixed Terminal-Time Problems

This phase of the mechanization is identical to that for free

terminal~time problems when the following modifications are made:
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CONTROL LOGIC

Sf(f,l‘—f),S”(f,Tij),i=I, N DETERMINE  _
WHICH Sg(t, ), Syt
ARE VALID
SWITCHING FUNCTIONS
_§i ®(?f’?ij)’—ﬁ
MULTIPLIER = STORAGE
i
\
NOMINAL CONTROL ACTION
CONTROL- LEVEL ujl-Y=u; ) - Ajuj
CHANGES - HEN
Aiﬁj sij “:Tij):o
STORAGE OR u{-)=0 WHEN S¢lt,1()=0
NOMINAL
SWITCH POINTS
x(tex(ty;)
STORAGE
x(N=%(Tjj) x(t) PHYSICAL
——()—= SYSTEM _|-=
x(t)-X(tg) + x(1)=f[x(1),u(h)]

Figure 4.2, Feedback Mechanization of Neighboring Optimal Control Law
for Free Terminal-Time Problems.
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1. Since tf = E& » and hence t = t, it follows that t =

tO =t = Eb during this phase of the mechanization. Thus, Eq.

4,13 is modified to become

t, =t - EN,cp(Ef,to)[x(tO) - x(t)] (4.137)

and Eq. 4.14 is omitted.

2, Since t = t, Step 3 is omitted.

Since no iterative technique is required to calculate t , it is
seen that this phase of the mechanization is simpler than that for
free terminal-time problems. Consequently, the open-loop computation
time, tC » 1s considerably smaller for this class of problems.

The closed-loop phase of the mechanization is described as

follows:

Feedback Mechanization for Fixed Terminal-Time Problems

The feedback mechanization for fixed terminal-time problems is
identical to that for free terminal-time problems when the following

two modifications are made:

1. Since t = t, the switching functions (Eq. 4.16) are re-

defined to be (see Eq. 4.7)

Sij(t,t) = Eij— t - gi®(EE,t)[x(t)-§(t)], i=1,"", N,

<t<t ,
)y SESE5 0 B Sty (4.16%)

and, since tf = Eé , the final-time switching function (Eq. 4.17)

is omitted.
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2, From Eq. 4.167, Sij(t’t) is the switching function for
t —
the i h—neighboring switch time, t'j’ only if ¢t S'tij . If
i
t.. >t , s BEq. 4,16 is modified to become
1] 1]
S £ =t - - = ®(E x(E ;= e
ij( »t) tij t gi®(tf,t)[x(t) x(tij)], i=1, s N,
(4.16m)
£, . <t<t,, ,t>t,. .
(i+1) ] = i3’ ij
Hence, in the time interval (Egj’tij] , x(t) is equated to E(Eij)
since only values of Q(E), E'S E'j ,» are allowed in Eq. 4.7 .
i
This completes the description of the neighboring feedback control
scheme for fixed terminal-time problems. A block diagram of this

mechanization is shown in Fig. 4.3.

Note that Eq. 4.16" and Eq. 4.167 do, in fact, result in a feed-
back mechanization of the neighboring control law since Sij(t’t)’
i=1,""",N, are functions of the current state, x(t).* The neighboring
feedback control law mechanization described in this chapter is summar-

ized, for convenience, in Section 4.5 .

4.5 Summary of Control Law Mechanization

The mechanization of the neighboring control law, described in
this chapter, is summarized in this section. The modifications in the

mechanization, made necessary when the terminal time is fixed, are

McNeal's mechanization is open-loop. when tij>gij (see [6], Eq. 5.11).

He replaces x(t) with X(Eij) in the switching function when tij> E;j'
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NOMINAL
SWITCH TIMES
t”
STORAGE
CONTROL_LOGIC
i)\ Sijitt)i=l;«N DE TERMINE
=0} WHICH Sjj(t,t) —
_\( ARE VALID
7 SWITCHING FUNCTIONS
REAL TIME
t
MULTIPLIER STORAGE
|
NOMINAL CONTROL ACTION
CONTROL- LEVEL ujl-Y=uj (i) -AiTj
CHANGES - WHEN
STORAGE OR u(-)=0 WHEN t=t;
NOMINAL
STATE, X (1)
STORAGE
-x - PHYSICAL
x(t) -x(t) JJ@ x(t) SYSTEM

-+

i(f)=f[x(1),u(f)]

Figure 4.3. Feedback Mechanization of Neighboring Optimal Control Law
for Fixed Terminal-Time Problems.
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indicated. The neighboring control law mechanization is summarized

as follows:

Summary of Preliminary Computations

1. Determine, by problem simulation and/or analysis, the number

of nominal switch times, N , such that for each neighboring initial
state, x(to), of interest, the number of neighboring switch times, N ,
satisfies the inequality N <N.

2. Generate a sufficient number of nominal trajectories (see
Section 3.1), each having N control discontinuities, such that each
x(tO) of interest lies near one of the nominal trajectories, and such
that the final control vector, E(E&) , of that nominal trajectory, is
equal to the final control vector, u(tf), associated with the optimal
neighboring trajectory for x(to) .

3. For each nominal trajectory, calculate and store the following
data for use in the control law mechanization:

a. The gains, Ei and Eb , L = 0,000, ﬁ, (see Eq. 3.59-

Eq. 3.60),
b. The nominal switch-time vector, E; (see Eq. 3.63).
c. The nominal final time, Ef.
d. The control level changes, Aiaj , 1= 1,"’,ﬁ, (see Eq. 3.6).
e, The nominal final control vector, E(Ef).

£f. The nominal state history, Q(E), tO < t < Eé , Or an
integration routine (Eq. 2.8) which determines
x(t), t e [to,tf] .
g. The state transition matrix history, ®(tf,t), Eb S.E.S.Eé ,
or an integration routine (Eq. 3.21) which determines

®(tfat)9 _E (4 [tO’Ef]'
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Summary of Open-Loop Phase of Control Law Mechanization

— —

4, Set t = tO and t = t0 . (Set t = to= t = Eb when the terminal

time is fixed.) Use the gains, G, and gb , i=1,"-, N,

associated with an arbitrary nominal trajectory, to determine N° such
..> 0 ’
N°j and t(N +1)
(When the terminal time is fixed, replace Eq. 4.13 by Eq. 4.13° and

that ¢t j< 0 (Step 1 and Step 2 in Section 4.4) .,

neglect Eq. 4.14:)

5. Determine t such that time-to-go until the next switch time
is the same for both neighboring and nominal trajectories, revaluating
N° whenever necessary (Step 3 in Section 4.4) . (When the terminal
time is fixed, omit this step.)

6. Using the current values of t and N° , evaluate N, u(to) ,
and u(tf) , associated with neighboring initial state x(to) (Step 4
in Section 4.4) .

7. Choose a new nominal trajectory such that E(Ef) = u(tf) .

Then recompute t (only if the terminal time is free) and check to see

if £.>0,

Nj <0, and t,< t_. . If these inequalities are not

E w1 § 15 °f

satisfied, revaluate N and/or choose a new nominal trajectory. Then

recompute t and again check to see if the above inequalities are

satisfied (Step 5 and Step 6 in Section 4.4) .

Summary of Neighboring Feedback Control Law Mechanization

8a. For free terminal-time problems, monitor the functions (see

Eq. 4.16) Sij(t,E;j) , j=1ly°¢, m; i¢ [ 1,°°*,N], where each

Sij(t’zij) is the switching function for the next switch time for the
jth-component of the control function. No individual switching function

should be monitored until t is "reasonably close" to the corresponding

open-loop switch time. When any one of these switching functions becomes
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zero, say Si,j,(t,zi,j,) s uj,(o) undergoes a discontinuity and is
given by Eq. 4.18 . Then replace Si'j'(t’gi‘j‘) by the next switch-
ing function for uj,(°) in the sequence of monitored switching functions.

8b, For fixed terminal-time problems, monitor the functions (see
Eq. 4.16" ) Sij(t’t) s j=1ly°°, m; ig¢ [l,:°°,N], where each
Sij(t’t) is the switching function for the next switch time for the
jth-component of the control function. Then proceed as in 8a. If

ij> Eij s, replace Sij(t’t) in the monitored sequence, defined in Eq.

4,167 , with Sij(t’t) » defined in Eq. 4.167 .

9. When all N switchings have occurred, monitor Sf(t,zé) s
defined in Eq. 4.17 , and set u(+) =0 when Sf(t,zé) =0,
(For fixed terminal-time problems, set u(*) =0 when ¢t = E} .)

The neighboring control scheme summarized above is utilized, in the

next chapter, to solve one minimum~fuel and two minimum-time optimization

problems.
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CHAPTER V

APPLICATION TO CONTROL PROBLEMS

In this chapter, the neighboring optimal feedback control law
developed in the previous chapters is utilized to solve three control
problems. First, the problem of minimum-fuel control, to the origin,
of the 1/s2 plant is considered. This problem is solved analytically
and demonstrates the control law mechanization for fixed terminal-
time problems. The second problem considered is the minimum-time
control, to the origin, of the l/s(sz+1) plant. The optimal switching
surface and trajectories for this problem are known [15] , and hence
are compared to those generated by the neighboring control scheme.
Also, this problem demonstrates the control law mechanization for free
terminal-time problems. Both of these problems involve scalar control
of low-order systems. To demonstrate the effect of the neighboring
control scheme upon high-order, multi~input systems, the minimum-time
satellite attitude-acquisition problem is considered., The simulation
o f the satellite dynamics, and the associated neighboring optimal feed-
back control law, was performed in single precision on the Stanford
University IBM 360/67 digital computer.

The results presented in this chapter, for these three control
problems, demonstrate the feasibility of a neighboring optimal control
scheme, and lend credence to the feedback mechanization of this control
scheme, described in Chapter IV. 1In addition, these results show the
action of the neighboring control scheme when applied to states which

are a significant distance from the nominal trajectory.
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5.1 Minimum-Fuel Control of 1/s2 Plant

The problem considered in this section is the well-known problem
2
of minimum-fuel control, to the origin, of the 1/s” plant. The system

dynamics are given by

;l(t) = xz(t) . xl(to) =

- 10
(5.1)
x2(t) = u(t) , xz(to) = Xy 0
where the scalar controi function is subject to the constraint
lu(e)| < 1.0, b, St <t (5.2)

The final time, tf , is specified. The performance index is given by

I
T=J, |uw]| at . (5.3)
0

By augmenting the state (Eq. 2.5) , the performance index may be

written

al
]

= Flx(t)] = x5(¢) (5.4)

where

it

%B(t) lu(e)| 5 x40ty =0 . (5.5)

The terminal constraints are written
0
xl(tf)

v [x(tf)] = = . (5.6)
xz(tf) 0

It is known that at most two discontinuities in the optimal

control function can occur [16], and hence N =2, It is assumed that
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the initial state, (xlo,xzo) s is such that the origin is reachable
in time (tf—to) . Recall that the neighboring control scheme is only
valid when applied to states which are controllable in time (tf-to).
Set tO = Eb = 0,0 and tf = EE = 3,0 . Choose the nominal, initial
state to be (glo,géo) = (1.25, 0.0) . The nominal, minimum-fuel tra-
jectory for this initial state and terminal time is easily determined
(see, for example, [16]) , and is shown in Fig. 5.1 . The nominal
switch-time vector is found to be E; = (2.5, 0.5) , and the resulting
minimum-fuel cost is Egp = 1.0 . The initial control function is
u(ty) = -1.0 and the final control function is u(t;) =+ 1.0 .
To determine the neighboring control law, the weighting matrix,
W , is set equal to the second-order identity matrix, and the scalar
gain, K , is allowed to become arbitrarily large (see Eq. 2.10). Since
the system dynamics are linear, Eq. 3.57, in conjunction with Eq. 3.61,

is used to calculate the feedback gains, G2 and El , Which are given

as follows:

0.5 -1.25 0.0

21
i

(5.7)
-0.5 0.25 0.0

128!
I

[-0.4 -0.8 o.o] . (5.8)

Using these gains, the neighboring optimal feedback control scheme
for fixed terminal-time problems was applied to the following initial

states:
1.375
Example I: X, =
-.125
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[2.00
Example II: x0 =
[ -.25 ]
[ 0.75]
Example III: x_ =
0 | 0.0
1.0
Example IV: X =
0 |-1.0

In each case, the open-loop phase of the neighboring control law
mechanization (see Section 4.4) verified that the chosen nominal
trajectory is, indeed, appropriate for these chosen initial states.

The neighboring optimal trajectories, for each of these initial states,
are shown in Fig. 5.1 , and are specified by the number of neighboring
switch times, the neighboring switch-time vector, the initial and final
control functions, and the final state, in Table 5.1 .

Also included in Table 5.1 are the optimal switch-time vectors,
(tS)op , the neighboring and optimal costs, J and Esp*, and a measure
of the effectiveness of the neighboring control scheme, |\x(tf)|l/ “XO“’
for each neighboring trajectory. The optimal switch times and optimal
costs were obtained by solving Optimization Problem I, for each neigh-
boring initial state, by the technique developed in [16]. Note that

3'3 Egp for each of the example trajectories. This is expected since

the terminal comstraints, Eq. 5.6 , are not satisfied exactly by any

The neighboring cost, J , listed in Table 5.1 , is the nominal
performance index (Eq. 5.4) evaluated along the neighboring trajectory.
Thus, non-satisfaction of the terminal constraints is not reflected by
the magnitude of J.
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of the neighboring trajectories, and hence the neighboring fuel re-
quirement should be less than that required to satisfy the terminal

constraints exactly. The distance from x(t) to the origin is defined

by
C—
\\x(t)\‘ E\J}i . xiz(t) . (5.9)
l=
Hence, \\x(tf)‘l / \\xo\‘ is the ratio of the distances, from the

origin, of the neighboring final and initial states. This ratio
reduces in magnitude when the neighboring initial stateslapproach the
nominal trajectory, as indicated by the results in Table 5.1 .

In Fige 5.1 , Trajectory I lies closest to the nominal path and
is very nearly optimal. The remaining neighboring trajectories are a
significant distance from the nominal path and are, therefore, sub-
optimal, as indicated by their non-satisfaction of the terminal con-
straints. Since K was allowed to become arbitrarily large, the sub-
optimality of these trajectories is due entirely to the large deviations
in the neighboring states away from the nominal path, and not due to
the relaxation of the terminal constraints, required in order to obtain
the neighboring feedback control law (see Section 2.3).

When solving Example IV, the open-loop phase of the neighboring
control law mechanization dictated that N = 1 and u(to) = 0 . This
means that the minimum-fuel trajectory, to the origin, requires time
t.< t.=3.0. Hence, the calculation of this trajectory becomes a

e

free terminal-time problem, subject to the constraint te < te - The

feedback gains, M and G1 , associated with free terminal-time tra-

jectories, are given by (Eq. 3.32 and Eq. 3.59)
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'ﬁ{o.o 1.0 o.o] , (5.10)
G1=[-z.o 0.0 o.o] . (5.11)

These gains were used, in conjunction with the free terminal-time
neighboring control law mechanization, to generate Trajectory IV in
Fig. 5.1 . The neighboring final time was calculated to be tf= 1.625 < Eé.
The optimal final time for this example is (tf)op = 1.50 .

Finally, note that t21 > EZl for Trajectory II and t11 > Ell for
Trajectory III. Hence, the switching function defined by Eq. 4,167

was utilized to calculate these particular switch times.

5.2 Minimum-Time Control of l/s(52+1) Plant

A problem considered by Fliigge-Lotz and Mih Yin [15] is discussed

in this section, namely, the minimum-settling-time problem for the

*
1/s(sz+1) plant. The system dynamics are given by

, = - i = .12
Ky (£) = -x (€) +u(t) . xy(k)) = x| (5.12)
x5(£) = u(t) . x3(tg) = %xgy
where the scalar control function is subject to the constraint
u(e)| <10 , £ <t t . (5.13)

0 f

Eq. 5.12 is the normal form of the state equations for the
1/s(sz+l) plant (see[l5], pg. 35).
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The performance index is
J = te - &y - (5.14)
By augmenting the state (Eq. 2.5) , the performance index may be written
J = F[x(tf)] = x4(tf) (5.15)
where
x4(t) =1 , x4(t0) =0, (5.16)

The terminal constraints for this problem are written

-xl(tf) ) r 0 ]
Y[x(tf)] = xz(tf) = 0 . (5.17)
[%3(tg) | | ©

The number of nominal switch times is chosen to be N = 4.
Neighboring initial states which are controllable, and which require
no more than four switch times, are considered. Set t0 = Eb = 0.0

and choose the nominal initial state to be (E (-3.600,

10" %20> *30) =
2.000, -3.665)., The minimum-time trajectory, to the origin, from this
initial state is known (see [l15], Fig. 3.6), and is shown in both Fig.
5.2A and Fig., 5.2B . The nominal switch-time vector is E;= (8.360,
6.789, 2.077, 0.506) , and the nominal final time is E} = 9,930. The
nominal initial control function is Ek?o) = +1.0 , and the nominal final
control function is G(EE) = +1.0 .

Again, as in the second-order example (Section 5.1) , set the

weighting matrix, W, equal to the third-order identity matrix, and

let the scalar gain, K, become arbitrarily large (see Eq. 2.10). The
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Figure 5.2A. Neighboring Trajectories for Problem of Minimum-Time Con-
trol of 1/s(s2 + 1) Plant: Example I and Example II.
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Figure 5.2B. Neighboring Trajectories for Problem of Minimum-Time Con-
trol of 1/s(s¢ + 1) Plant: Example III and Example IV.
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system dynamics (Eq. 5.12) are linear, and hence Eq. 3.57, in conjunction

with Eq. 3.61, is again used to calculate the feedback gains, Eﬁ and

gb s N=1,""*, 4 . These gains, along with the final-time feedback

gain, M (Eq. 3.32 or Eq. 3.60 with N = 0) , are given in Table 5.2 .
Using the feedback gains in Table 5.2 , the neighboring optimal

feedback control scheme for free terminal-time problems was applied

to the following initial states:

[-1. 000
Example I: X, = 0.0

-0.965

C 0.0

Example IL: x, = 3.0

-3.5

[ 2.970]

Example III: x, =1{ 3.190

| -0.175

2,500

-2.000

]

Example IV : X

0.488
= -

For each of these initial states, the open-loop phase of the neighboring
control scheme (see Section 4.4) deduced that u(tf) = +1,0, verifying
that the chosen nominal trajectory, with E(Ef) = +1,0 , is appropriate
for these initial states. The neighboring trajectories for these

states are shown in Fig. 5.2 A and Fig. 5.2 B, and are specified in
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nw o8

Feedback Gain

Gy &o
0.0 0.0 0.0l [-0.5 0.5 0.5 0.0]
N = 4 -0.125  0.125 0.0
0.0 0.0 0.0
-0.125  0.125 0.0
20.25 0.0 0.0 0.0]| [0.5 0.5 0.5 0.0
N=3 [[-0.25 0,25 0.25 0.0 C ]
0.25 0.0 0.0 0.0
] 20.50 0.0 0.0 0.0]{ 0.5 o
N <2 : : 5 0.5 0.0
Eo.zs -0.25  0.25 0.0 E 1
n=1 [[-0.333 o0.166 -0.166 0.0]| [-0.333 0.667 0.333 0.0]
N=0 |[o.0 0.0 0.0 0.0]| [0.0 0.5 0.5 0.0

Table 5.2, Neighboring Feedback Gains for Problem of

Minimum-Time Control of 1/s(sz+ 1) Plant.

Table 5.3 by the initial and final control function, the number of switch
times, the switch-time vector, the final time, and the final state.

In Fig. 5.2A, Trajectory I, with two switch times, lies quite
close to the nominal trajectory and is very nearly optimal, as indi-
cated by x(tf) for Example I in Table 5.3, Trajectory II, with three
switch times, lies farther from the nominal path, but is still reason-

ably close to being optimal. ‘Again, since K was allowed to become
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. . Example Example Example Example
Trajectory Nominal T 11 111 v
-3.600 ~-1.000 0.0 2,970 -2,500
Initial State, X 2.000 0.0 3.0 3,190 -2.000
~3.665 ~0.965 -3.5 -0.175 0.488
Initial Control +1.0 +1.0 -1.0 -1.0 +1.0
Function, u(to)
Final Control +1.0 +1.0 +1.0 +1.0 +1.0
Function, u(tf)
Number of Switch 4 9 3 3 2
Times, N
8.360 2.63 7.28 7.55 3.77
Switch-Time 6.789 1.10 5.88 4,24 1.19
Vector, tS 2.077 0.93 0.49
0.506
Final Time, tf 9.930 4,030 8.260 8.110 5.200
0.0 -0.0353 -0.2048 -0.5751 ~-0.4484
Final State, x(tf) 0.0 0.0005 -0.0927 -0.3084 -0.5180
0.0 0.0054 0.1037 0.3333 0.5270
IESCIIRVATENE 0.0 0.0257 0.0536 0.1678 0.2669
Table 5.3. Data and Results for Problem of

2
Minimum-Time Control of 1/s(s” + 1) Plant.
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arbitrarily large when calculating the feedback gains in Table 5.2,
the sub-optimality of these trajectories, as well as of those in
Fig. 5.2B , is due entirely to the finite deviations in the neighboring
states away from the nominal path.

Trajectory III and Trajectory IV, in Fig. 5.2B, show the action
of the neighboring control scheme when applied to states which are
far from the nominal path. As indicated by ‘lx(tf)ll / l‘xoll > given
for each neighboring trajectory in Table 5.3, the degree of optimality
of these trajectories is seriously reduced. Nonetheless, considering
the magnitudes of the deviations in the neighboring states away from
the nominal path, the neighboring control scheme performs reasonably
well, even though the terminal constraints are not satisfied.

In Fig. 5.3, the neighboring and true optimal trajectories for
Example III and Example IV are compared. The optimal trajectories
for these initial states were determined by the techniques described
in [15]. The optimal and neighboring switch times and final times,

for these example trajectories, are compared in Table 5.4 .

Example III Example IV
) [7.55 3.77
Neighboring Switch-Time 4. 24 1.19
Vector, t L.0.49
76.975 3.840
Dptimal Switch-Time 4.014 0.890
Vector,(ts)op | 0.698
Neighboring Final 8.110 5.200
Time,t
f
Dptimal Final 7.500 5.410
Time, (tf)Min

Table 5.4, Comparison of Neighboring and Optimal Switch

Times and Final Times for Example III and Example IV.
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Neighboring and Optimal Trajectories for Problem of Min-
imum-Time Control of 1/s(s2 + 1) Plant: Example III
and Example IV,
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Finally, recall that the switching surface generated by the
neighboring control scheme is, in a sense, a linear approximation of
the nominal switching surface at the nominal switch points (see Sec-
tion 4.1). The projection of the optimal, nominal switching curve,
onto the X%, -plane, is shown in Fig. 5.4 (see [15], Fig. 3.6). The
projection of the optimal switching curve for the neighboring initial
states of Example IIL and Example IV is also shown in Fig. 5.4 (see
[15], Fig. 3.3). The irregularity of the optimal switching surface,
and the geometric dissimilarity of the switching surface at the nominal
and neighboring optimal switch points, are indicated in Fig. 5.4 by
these projections, Hence, for these example trajectories, one cannot
expect that a linearization of the switching surface at the nominal
switch points is a good approximation to the optimal switching surface
at the neighboring switch points.* It is therefore concluded that
this example problem is a severe test for the neighboring optimal control
scheme developed in this paper. One should expect improvement in the
performance of the neighboring control scheme when applied to problems

with better behaved optimal switching surfaces.

5,3 Minimum-Time Satellite Attitude-Acquisition Problem

The problem considered in this section is the problem of minimym-
time attitude control of an earth-orbiting satellite. It is assumed

that the attitude of the satellite is controlled by three high-torque

*

It would be interesting to compare the numerical results obtained
here with those of Frederick [17] for the l/s(sz+l) plant. He designed
linear and piecewise-linear switching functions for the quasi-minimum-
time control of this plant.
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cold gas jets fixed to the satellite and alligned with the three
principal axes of the satellite. The torque level generated by the

cold gas jets is assumed to be large compared to the gravity-gradient

and disturbance torques acting on the vehicle. The satellite is assumed
to be a rigid body and the earth is taken to be an inertially fixed point
mass.,

The problem considered here is the minimum-time attitude-acquisition
problem. That is, given an initial state, Xy » use the neighboring
optimal feedback control scheme to acquire a desired state, Xe in
minimum time. The three-axis Euler angles, 91 , 1 =1,2,3, defined in
Appendix C(yaw, roll, and pitch angles, respectively), and the asso-
ciated inertial angular velocity components, w; > i= 1,2,3, are chosen
to be the state variables for this system.* Hence, the (6 x 1) state

vector is defined to be

[6,(8)]
8,(t)
8,4(t)
w; (£)
w, ()
| 03(t)

x(t) = ,» b <t <t (5.18)

where ei(t), i =1,2,3, are measured in radians, and wi(t), i=1,2,3,
are measured in radians per second. Since a feedback control law is

utilized in the solution of this problem, the state must be measurable,

The angular velocity components, w, i=1,2,3, are inertial under
the assumption that the earth is inertidlly fixed. This is made evident
in Appendix C,
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A brief discussion on possible techniques for measuring ei(t) and
wi(t) , i=1,2,3, is presented in Appendix D.

The dynamical and kinematical equations for the satellite are
discussed in detail in Appendix C. For simplicity, the discussion
here is limited to satellites in circular orbit with angular velocity
r(i.e. é = r in Eq. C.6 of Appendix C). Then, using Eq. 5.18 in Eq.

C.4 and Eq. C.6 of Appendix C, the state dynamical equations are written

as follows:

) 1

Xl(t) - CZ[XLI-(t)CB - Xs(t)SB + rclsz H Xl(to) - elo >
xz(t) = xa(t)s3 + x5(t)c3 - T8, xz(to) = 620 ,

: =1 -
x3(t) =< [—xé(t)5203+x5(t)szs3+x6(t)c2 - rcl],x3(t0) = 930,

2

§4(t) = ul(t) - klxs(t)x6(t) \ XA(to) = wyg (5.19)
;S(t) = uz(t) - k2X6(t)X4(t) s xs(to) = wzo’

X6(t) = U3(t) = k3x4(t)xs(t) s XG(tO) = W3O L)

where si = sin(xi(t)), i=1,2,3, and g = cos(xi(t)), i=1,2,3, In

Eq. 5.19, the control vector components, ui(t), i=1,2,3, have the

dimensions of radians per second per second (see Eq. C.3 in Appendix C).
The particular satellite, considered in this study, is the same

as the satellite considered by Wolske [2 ] . The principal moments of

inertia (see Appendix C)are given by

Il = 800 slug~ft2 ’ (5.20)
cont.
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I. = 581 slug-ft2
(5.20)

I, = 300 slug-—ft2 s

and the resulting inertia parameters (Eq. C.2 in Appendix C) are

kl = -0.351 ,
k2 = 0,860 , (5.21)
k3v= -0.730 .

Also, from Wolske, B, =B, = py = p = 0.206 /180.0 rad/sec2 (see Eq.
2,2). That is, the control vector components must satisfy the constraints
_ 0.206 _ rad

lu ()] < B =1500 " sac2 > L = 1:2:3;5 gyt < g - (5.22)

The orbital angular velocity, r , is chosen to be

r = 1.0583 x 10> 224 (5.23)
sec

which corresponds to a circular orbit with an approximate period of
99 minutes.

The chosen control objective is to give the satellite zero angu-
lar velocity and zero angular displacement relative to the orbital
reference axes (see Fig. C.1 and Fig. C.2 in Appendix C). That is,
the control objective is to make the satellite earth-pointing, with
one principal axis of the satellite directed toward the earth and
another principal axis directed normal to the orbit plane. To achieve

this objective, the terminal constraints are written as follows:
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[ (tg)
Xz(tf)
YIx(e)] = [ay(ty) -
x4(tf)
XS(tf)
x6(tf) - r; L

. (5.24)

c O O O O ©

Again, by augmenting the state (Eq. 2.5) , the performance index is

written

J = F[x(tf)] = x7(tf) , (5.25)

where
x7(t) =1, x7(t0) =0 ., (5.26)

A number of optimal, nominal trajectories were generated by inte-
grating backwards, simultaneously, the adjoint and state equations
for different values of the final adjoint vector. It was found that,
for the initial states of interest, only three nominal switch times
were required, one for each component of the control vector. Thus,
the number of nominal switch times was chosen to be N = 3 . The nom-
inal final control vector was chosen to be E(Eé)= 8 ,+8 , +B) .
Therefore, only neighboring initial states for which u(tf) = (48,
+8, *B) are considered in the examples of this section. The chosen nom-
inal, minimum-time trajectory and control history are shown in both Fig.
5.5A,B,C and Fig. 5,6 A,B,C . The nominal initial state, initial control
vector, switch-time vector, time-sequence of the nominal control-com-
ponent switchings, and final time, are given in Table 5.5 .

To calculate the feedback gains, the nominal and neighboring
initial times were set equal to zero, and the weighting matrix, W

(see Eq. 2.10) , was chosen to be the sixth-order identity matrix.
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Figure 5.5A. Neighboring Euler Angle Time History: Example I and Exam-
ple II of Satellite Attitude-Acquisition Problem.
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Figure 5.5B. Neighboring Angular Velocity Time History: Example I and
Example II of Satellite Attitude-Acquisition Problem.
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Figure 5.6A. Neighboring Euler Angle Time History: Example III
and Example IV of Satellite Attitude-Acquisition Problem.
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. . Example Example Example Example
Trajectory Nominal I I 11T v
-.69464 ~.89@55 .28001 0.0 -.40000
-.38946 .06821 .12066 0.87266 0.40000
Initial State. x -.02859 . 15746 . 27800 0.87266 0.40000
> 70 .07633 .07526 .02096 0.01693 0.06000
. 10914 . 08445 .03375 0.01807 0.0
. 04704 06174 01774 0.01813 0.06000
Initial Control [ -p -] [ -5 F -3 ] [ g7
Vector, u(t,.) - -B -8 -B -B -B
rad/sec2 | -B | -B | | -B ] | B ] | -B ]
Final Control [ +6 +3 ] [+  +3 ] [ +p ]
Vector,zu(tf) - +p +B +p +B +6
rad/sec | B B | 1B | B ) | +B |
Number of
Switch Times, N 3 3 3 3 3
Switch-Ti 39.1652 35.395 15.550 23,048 26.547
Veoror b -sec 38.7611 34.995 15.900 16.200 26.797
0L, by 32,5010 27.147 17.649 16.450 9.550
Time-sequence of o
Co?tro%-Component uz,ul,u3 uz,ul,u3 u3,u1,u2 ul,uz,u3 uz,u3,u1
Switchings
Final Time, 50.0 45.043 25.997 31.696 34,795
tf- sec
0,0 -.00543 -00364 .09686 -.04598
0.0 .00192 -.09557 .16594 .13538
Final S (¢ 0.0 -.00124 . 00545 .02072 .01807
inal State, x(tg) 0.0 -.00021 .00289 .02148 -.01209
0.0 .00028 -.00707 .00312 .02958
r . 00106 .00573 -.02324 -.01631

Table 5.5. Data and Results for Minimum-Time Satellite

Attitude-Acquisition Problem.
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The scalar gain, K (see Eq. 2.10), was set equal to 105 . The system

dynamics for this problem (Eq. 5.19) are nonlinear in the state, and

hence no simplifications in the feedback gains, GN and gb .
N=1,2,3, as defined in Eq. 3.59 and Eq. 3.60, are possible.* These
gains, along with the final-time feedback gain, M (Eq. 3.32 or Eq. 3.60
with N = 0),are given in Table 5.6 .

The neighboring optimal feedback control scheme for free terminal-
time problems was applied to four initial states, listed in TableAS.S%*
For each of these examples, the open-loop phase of the neighboring
control scheme (see Section 4.4) verified that the chosen nominal tra-
jectory is appropriate for the chosen initial state (i.e. u(tf) =
G(E&) for each example trajectory). The neighboring state and control
time histories for these initial states are shown in Fig. 5.5A,B,C and
Fig., 5.6A, B, C . Since the neighboring control law algorithm is based
upon time~to-go until the next switch time, and until the final time,
these trajectories are plotted to terminate at the nominal final time.
This allows one to make a better comparison between the neighboring
and nominal, state and control, time histories. Each neighboring tra-
jectory is also specified in Tablé 5.5 by the initial and final control
vector, the number of switch times, the switch-time vector, the time-
sequence of control-component switchings, the final time, and the final

state.

*
The calculation of the feedback gains in Section 5.1 and Section

5.2 was simplified since the system dynamics for the problems considered
there are linear in the state.

Example III corresponds, numerically, to the minimum-time problem
considered by Wolske ([2], pp. 63-72). He obtains a sub-optimal, bang-
zero-bang control function with a 37 sec. operating time. It is inter-
esting to compare his results with_those obtained in this section.

88



Number

of -
Switch Feedback Gains: G_,g
X N’ 8o
Times
- 2.2494 - .3564 -12,8022 .4155 3014 - .6849 0.0
[ -11.8812  -3,0110 .2969  -.6230 .1879 L4606 0.0
N=3 1.7870  -8.1730 .3778 .1209  -.3840 .2668 0.0
2 [- 9.0834  -4.9777 - 9.0529  92.9890 92,2471  92.9412 0.0
_ - 2.0921 -1.0755 -12.7690 4262 ,2676  -.6614 0.0
¢
2 -11.9693  -2.6079 .2783 - .6290  .2069 L4476 0.0
N =2
gy [- 9.6150 -2.5462 - 9.1653 92.9530 92.3613  92.8618 0.0]
G, [- .2054 - .e644 -12.8128 .5253 .2350  -.7320 0.0
N=1
g5 [- .1518 - .4843 - 9.3853 93.4503 92.1978 92.5080 0.0 ]
6, |{[ o.0 0.0 0.0 0.0 0.0 0.0 0.0]
N=0
M [- .0013 .0024 0.0 93.0655  92.0256  93.0442 o.o]
Table 5.6. Neighboring Feedback Gains for Minimum-Time

Satellite Attitude-Acquisition Problem.
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Trajectory I in Fig. 5.5 A,B,C is very nearly optimal, as indi-
cated by x(tf) for Example I in Table 5.5. Only the initial yaw angle
(el(to)) deviates significantly from the nominal. This is reflected by
the fact that el(tf) is several times larger than Gz(tf) and
eB(tf) . Also note that the order in which the control components switch
along this example trajectory is the same as that for the nominal tra-
jectory.

The deviations in the neighboring states away from the nominal path,
for each of the three remaining examples, are much larger than those
in Example I. The performance level of the neighboring control scheme
is, therefore, reduced. Also, the order in which the control components
switch, for each of these three examples, differs from that for the nominal
path (see Table 5.5, Fig. 5.5C, and Fig. 5.6C). For the range of ini-
tial states considered here, the final yaw angle (el(tf)) does not
exceéd 5.6° , the final roll angle (ez(tf)) does not exceed 9.5° s
and the final pitch angle (93(tf)) does not exceed 1.2° . The final
yvaw, roll, and pitch rates (wl(tf) s wz(tf) 5 w3(tf) , respectively) ,
for these examples, never exceed 1.7%/sec .

These deviations away from the desired terminal constraints (Eq.
5.24) can be reduced by generating nominal trajectories which are closer
to the neighboring initial states. However, it should be kept in mind
that, in general, the terminal constraints will never be satisfied
exactly, This is due to the fact that, as one approaches the terminal
state, the number of remaining switch times is not sufficient in number
to satisfy the terminal constraints. Therefore, the neighboring con-
trol scheme should be used as a neighborhood-acquisition control law,

When the degree of non-satisfaction of the terminal constraints is
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beyond allowed tolerances, a high-accuracy, station-keeping control
scheme should be used to reduce the deviations in the final state

away from its desired value.

Example I Example II
' . 35.395 7] 15,550
Neighboring Switch-Time 34.995 15.900
Vector, t - sec N ’
s |27, 147 | [ 17.649
Optimal Switch-Time Ez'g;g rig.?éé
Vector, (ts)op- sec 27.232 | | 16.283
Neighboring Final
Time. oo sec 45,043 25,997
Optimal Final 45.000 25.000
Time, (tf)Min- sec ‘

Table 5.7. Comparison of Neighboring and Optimal Switch

Times and Final Times for Example I and Example IIL,

Finally, in order to make a direct comparison between the optimal
and neighboring control laws, the optimal and neighboring switch-time
vectors and final times, for Example I and Example II, are shown in
Table 5.7 . The deviations, from their optimal values, in the neigh-
boring switch times and final times, are easily deduced from Table 5.7
for these examples. These deviations are felt to be representative
of those encountered when applying the neighboring control scheme to
initial states which are similarly displaced away from any generated

nominal path.
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CHAPTER VI

SUMMARY AND CONCLUSIONS

The concept of neighboring optimal feedback control of high-order,
nonlinear systems, with multi-dimensional, discontinuous control func-
tions, has been investigated in this paper. The neighboring optimal
feedback control law for this class of systems was derived, and the
implementation of this control law was discussed. The derivation of
the control law was based upon the assumption that all state and switch-
time perturbations are infinitesimal. The implementation of this con-
trol law was constructed to allow for finite, and possibly large, devia-
tions in the neighboring state away from the nominal trajectory.

By allowing for finite state and switch-time perturbations, the
region, in state-space, for which the neighboring feedback control
scheme gives meaningful results, is greatly enlarged. When these per-
turbations are finite, use of the neighboring control scheme will, in
general, not result in exact satisfaction of the terminal constraints,
even when the scalar gain, K (see Eq. 2.10) , approaches infinity.
This is due to the fact that the terms higher than second-order in the
expansion of the performance index, which were neglected in the cal-
culation of the neighboring control law, are no longer negligible,
However, by properly choosing the nominal time, and by allowing for a
possible reordering of the control-component switching sequence, use of
the neighboring control scheme can result in approximate satisfaction
of the terminal constraints. By generating a sufficient number of nom-
inal trajectories, one should be able to construct a neighboring con-
trol scheme which insures satisfaction of the terminal constraints to

within any desired degree of accuracy.
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The technique described to choose the nominal time, and the open-
loop algorithm which determines the number of switch times, the initial
and final control functions, and the appropriate nominal trajectory,
are presented without any rigorous mathematical justifications. No such
justification is possible since the state and switch-time perturbations
are assumed to be finite, and hence, strictly speaking, the concept of
neighboring optimal control is no longer applicable. These ideas are
supported, however, by a heuristic argument, and by the results presented
in Chapter V. At least for the example problems considered in this study,
the open-loop algorithm performed without fail, and the technique for
choosing the nominal time, described in Section 4.2 , performed better
than all other techniques investigated. Of course, if the neighboring
initial state is too far removed from the nominal trajectory, use of the
neighboring optimal control scheme can no longer be expected to give
meaningful results.

It can be stated, however, that when the region of interest, in
state-space, is known and is small, the neighboring feedback control
scheme, developed in this paper, is very nearly optimal. When this
region is unknown, or is large, the neighboring feedback control scheme
can be used as a neighborhood-acquisition control law. That is, when
one is not willing to generate a large number of nominal trajectories,
the neighboring control scheme can be used to acquire a terminal state
which lies in a finite neighborhood of the desired terminal state. In
any event, to determine the performance level of the neighboring control
scheme for a particular application, one must perform a systems analysis

and simulation similar to those performed in Chapter V.
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For future investigations, effort might be directed toward
reducing the errors in the terminal state vector. Since the terminal
state is, in general, quite sensitive to switch-time perturbations, one
approach to accomplish this might be to perform all computations in double
precision. One might investigate the effect of re-initiating the con-
trol scheme after acquiring a certain neighborhood of the desired terminal
state. One might also devise and test different techniques for choosing
t. Finally, the action of the neighboring control scheme should be exa-
mined when noise is present in the system, when some components of the
control vector are continuous, when the control history is composed of
both continuous and discontinuous segments, and when the optimization

problem of interest is singular.
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APPENDIX A
CALCULATION OF FIRST- AND SECOND-ORDER

PERTURBATIONS IN THE STATE

The first-order perturbation, SxI(E) » is the first-order solution

of the first-order, perturbed dynamical equations:

5x(E) = (08D + E (Dou(® , bx(fy) = ox (A.1)

0

where, based on the assumed functional dependence of £[-,*] upon

u(°) , E;(E)ﬁu(zj is evaluated to be

fu(t)au(t) = Aif R tij< t < tij+ atij s L =1,°°°, N;
(A.2)

je[L,o+,m] , £ (£)8u(t) = 0 , otherwise .

Eq. A.2 is valid only when a first-order solution of Eq. A.l1 is desired,.
Let the state transition matrix for Eq. A.l be &(-,+) . Then the

solution of Eq. A.l is
_ _ £
ox(t) = O(E,E)0x, + J'_ o(€,m)E, (r)sulr)dr (A.3)
t
0

It has been assumed that Btf> 0 and Stij> 0, 1i=1,*°°, N . Since

the switch times are distinct, and 8tij s, 1 =1,+++,N, are infini-

. - . i = soe N d ot + E . t .
teS:Lmal, tij + 5tij< t(i"l)j P 1L 2’ > N s an lJ ].J < £

Then, w ing Eq. A.2 in Eq. A.3 , 6x(E) , to first-order, and evaluated

= . is
at ¢t th s

N
t ) = ot ..t t ..t £5 , k=1,""*,N A4
i=k+1
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and ®x(t), to first-order, and evaluated at

bxl(tf) = ®(tf,t0)6x0-+§£ Q(tf’tij)éﬁfgtij .

N

i=1

(A.5)

The second-order perturbation, 5XII(E) s 18 the second-order

solution of the second-order, perturbed dynamical equations.

th - . . . .
i~ -component of Ox(t), between nominal switch times, must satisfy

sxi(T) = £ @ox(® + E N ®ou(® + 5xri (OF, L(Drou®

where the fact that E;u<E) = 0 has been utilized.*

notation has been used in writing Eq. A.6 :

Xu

1 T —=1i,— - N
+ 2 5xI (t)fXX(t)SxI(t) s ox(to) = Bx

(t)

i

I

by

P, (t)

d%y

of, (v)

ouy

3% 3u

2= —
2 E, (D)

axnau

= 2 -
2, (®)

1

1

It has been assumed that

f[’:']

O ]

axn

afi(t) ]
du
m
2_ —
3 fi(t)
axlaum

LY

2= —
3 £, (t)

axnaum J
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is linear in

(A.6)

The following

(A.7)

(A.8)

(A.9)



2— — 27— —
BACHEC
axlz axlaxn
— i — _ .
fXX (t) = . . , (A.10)
2— — 27— —
EACHECEAO)
2
| 3% 3%, 3%, |
8x" (t) = (bx (E))i . (A.11)

The state transition matrix for Eq. A.6 is again &(-,+) .. The
first-order perturbation, 6xI(E) , appearing in Eq. A.6 , is the first-
order solution of Eq. A.1l, and is thus considered as a prescribed

function of t . The solution of Eq. A.6 for 6xl(Ef) is thus

E'n

! () = [0 Eongl, + 3 [5), 4y EpmonmE Sy
0 j=1
(A.12)

+ [ .(;f @(Ef,T)Eu(T)Su(T)dT]i+ J‘;f

n
[— T P——
@, (b »m) B (D E, () BuCr)dT
0 0 j=1

Again, based on the assumed functional dependence of £[*,*] upon
u(*) , £ (e)du(t) and £ J(£)u(t) are evaluated to be

Eu(E') Bu(t) = AF(t)
? i ij ij

Exg (t)su(t) = [A‘ij ®1"

£ (£)du(t) = 0
v : ¢ otherwise ,

z iT Ty =
fxu(t)Su(t) =0
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where AE(f) and &xj(E) are defined to be
- = —— —— _ —_— - —
Af(t) = f[x(t),u(tij)] - f[X(t),u(tij)]

£ I

i

£ x®.8E D] - IED.aEH) TN

The last two terms in Eq. A.12 are now combined by using Eq. A.13

and rearranging terms:

- n
t

t
£ _ - - f T - T, =3
UE'O CI>(tf,’T)fu(T)8u(vr)dq-]i +IE Z' @ij(tf,q-)f)xl ('r)fxu('r)fiu('r)d'r

L]

- (A.15)
tk.+”6tk. - _ _
9T o, + AF (1) ox (r)]ar |
€ . .
kj 1
The integral term in Eq. A.15 is now expanded in a Taylor's series,
retaining terms only through second-order:
E£.+ ot . _ _
[ 7R o, L) + 6F, (r)exy(r)]ar
t . .
kj (A.16)
- - = - - = = 1. - =t = -
-@(tf,tkj)[[éi(tkj)+ 6F (5, omy (5, DToe, o+ 3L -E, (FDAECGE, )

v 2
+ Af (tkj)] atkj ]

i i E(E = A £ F(t . A. d Eq. A.15
Finally, recalling that Ai(tkj) Akfxf(tkj , Eq. A.16 and Eq

are substituted into Eq. A.12 to give¥*

* This result agrees with that of McNeal ([6], Eq. A.18 and Eq. A.19),

obtained for a scalar control variable by a slightly different deri-
vation.
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t

axl(Ef) = [@(Ef,?:'o)axoji+ j‘ z o (t ”T)5X (T)f (T)ax (T)dr
O j=1

+ [}; {¢(E'f,€kj)[ (AkE + zﬁxaxl(?kj))atkj + % ( i (th)Akf (A.17)
=1

+ Akfx-f_(fkg))ﬁtki ] } ]i

Finally, SXIE(Ef) is composed of the second-order terms in Eq. A.17:

N =
&l

n
8x£(7:'f) = Ifz o (t T)Sx%(T)in(T)SxI(T)dT
J=

0 j=1

ot |

(A.18)

+ [2 {¢(Ef,Ekj)[AkfX6xI(Ekj)atkj+ -21— ( £ (th)Akf + Akf f(t ))at ]}_l
k=1
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APPENDIX B

SOME NECESSARY COMPUTATIONS

The following computation is required in order to obtain the

expansion of the performance index as it appears in Eq. 3.30:

te & - i
JE Y o Eamles) ME I miar
0 j=1 .

e

n
t _ .
[ 1 ey Eemton M gmsm i
- 0 j=]_ -

o
i

|
L
l

f—

n
_[ Faxar )[ N z ’ii(Ef)q>ij(°Ef,r)Exi (T)]BXI(T)dT
0 i=1 j=1

|
N

t & .
- [ el o[ e o] spmer
0 j=1

(3.1) t _
- %f{f axIT(T)HXX(T)axI(T)d'r . (B.1)

0

The numbers in parentheses above the equality signs refer to equations
in the text which justify the ensuing step in the computation.
in

When determining the optimal switch-time perturbation, atkj s

Section 3.4, it is necessary to differentiate Eq. B.l with respect to
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Stk_ o This differentiation is performed as follows:
J

o [ j_ L ()ox (1)ar ]
30x,(T)
T
f [aat ]Hxch)SxImd : (8.2)
= Ty - - - , R . . ‘
where aﬁtk. Hxx(t) =0, t ¢ [to,tf] , since HXX( ) is a quFtlon of
) - - - 35x(t)
the nominal control vector only. For to < tcg th s —SSE;;—-E 0.
Thus
3%x, (T)T
I [ aSt ] HXX(T)SXI(T)dT =
(B.3)
30x, (t)
f \:a& :}H (T)ex (1)dr.
From Eq. 3.29, 6XI(E) , t e [Ekj,EEJ , 18 given by
N
T) = o(E T )ex, + ) O(E,T, IATer, L, T < Eet
SXI(t) = @(t,to)5x0+z (I)(t,tij)Ai 15 ° g < t-1)j °
(B.4)
k=2 ,*°°*,N , tkj< t g_tf , k=1.
Thus, differentiating Eq. B.4 with respect to atkj gives
B5XI(E) _ _ - -
——— t L] B.S
aath @(t,tkj)Akf s tkj< t< tg (B.5)
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Substituting Eq. B.5 and Eq. B.4 into Eq. B.3 then gives the desired

result:

t
£
1 T -
gﬁz& IE_ ox, (T)HXX(T)éxI(T)dT]
0

(B.6)

k t . N
(L-1)] — _ T - - -
z {j'f [o(r, B DAE B (1[0(r,Ey)ex, +z @(T,tij)Aithij]d’r}
=2 4] i=g
t N
£ _ _T_ _ _ _
+ le [o(r,F, IAE] B (e, Epoxy +Y o(r,, paFor, Jar .
% i=1
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APPENDIX C

SATELLITE ATTITUDE EQUATIONS OF MOTION

In this appendix, the attitude equations of motion for the earth-
orbiting satellite, considered in Section 5.3, are presented, These
equations are not derived in detail here since they are well known
(see, for example, [1], [2] , [18]). The assumptions made in the
derivation of these equations, and the coordinate systems used to
describe the attitude and dynamics of the satellite, are, however,
described in detail in order to make explicit the probleﬁ discussed
in Section 5.3.

The following assumptions are made in order to simplify the
dynamical description of the satellite:

Assumption 1. The satellite attitude is controlled by three cold
gas jets, fixed to the satellite, and alligned with the three princi-
pal axes of the satellite,

Assumption 2. The gravity-gradient and disturbance torques acting
on the satellite are negligible compared to the control torques gener-
ated by the cold gas jets.

Assumption 3. The satellite, hereafter designated body B, is a
rigid body.

Assumption 4. -The earth, hereafter designated attracting body E,
is an inertially fixed point mass.

Now let E; , 1i=1,2,3, be a set of right-handed, mutually ortho-
gonal unit vectors, fixed in B, and parallel to the principal axes of B.
Let the mass center, B* , of body B, be the origin of the body-fixed

reference axes, denoted by (xB > Vg o zB) and specified by bi’i =1,2,3.
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Let w, i 1,2,3, be the Eith-component of the angular velocity
vector of B relative to E (and hence relative to inertial space by
Assumption 4 above). The principal moments of inertia of B, with
respect to Ei, i=1,2,3, for B¥*, are denoted by Ii’ i=1,2,3,
Finally, let Ti’ i =1,2,3, be the control torques generated by the
cold gas jets about E;, i=1,2,3,

Utilizing the above notation and Assumptions 1l-4, Euler's dynamical

equations of motion for the satellite may be written (see [19], Pg- 283):

1 = 0y - ey (I I)

3
f

g = wyly - wyw, (Ig- I)) (c.1)

Ty = wgly - wjuy(Iy- 1))

Now define the normalized inertia parameters, ~k1 ’ kz s k3 , to be

3 2
k, = ’
1 I1
I. -1
k2 = L T 3 ? (C'Z)
2
- I2 - I1
3 I3

and define the control angular accelerations, ugs Uy > Ug s to be

L i=1, 2, 3. (C.3)
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Substituting Eq. C.2 and Eq. C.3 into Eq. C.1, and rearranging terms,

then gives

Wy = Uy T wpwgky

wy = U, - w3w1k2 s (C.4)

w3 = Uz = wgwokg .

The earth-fixed (or inertial) reference axes, denoted by (xE > Vg o zE),
and the orbital reference axes, denoted by (xR,yR, zR) , are shown in
Fig- C.1 for a satellite, B , in an elliptic orbit about the earth, E .

Both zp and zp are normal to the orbit plane. It is convenient to

direct Xp along the radius vector, p , and to direct Xy toward the
orbit perigee. 1In Fig. C.1l, "a" 1is the magnitude of the semi-major
axis, ¢ 1is the eccentricity of the orbit, and ¢ is the true anomaly.

The attitude of B , in inertial space, is specified by the three-
axis Euler angles, ei » L =1,2,3 . These angles are defined to be the
magnitudes of successive rotations, relative to the (XR’yR’ZR)
reference frame, about the (xB,yB,zB) reference axes, respectively.
A pictorial description of ei , 1 =1,2,3, is given in Fig. C.2, where
(xi,yé,zﬁ) and (xﬁ, yis zﬁ) represent the intermediate positions,
between successive rotations, of the (xB,yB,zB) reference axes. The
angles 61,92,93 are commonly referred to as the yaw, roll, and pitch
angles, respectively.

The kinematical equations, relating the three-axis Euler angles to

the components of the inertial angular velocity of B , are written as
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APOGEE PERIGEE

Figure C.1l. Reference Frames Associated With Satellite in Elliptical
Orbit,

Figure C.2. Pictorial Description of Three-Axis Euler Angles.

106



follows (see [18] , pg. 9):

wy = 0(sy83 - ¢18,c5) + 0 cycq + 6,5,

Wy = e(slc3 + c15233) -0 C, 84 + ezc3 (C.5)

1

wq eclc2 -+ 9132 + 93

where s; = sin(ei) , 1=1,2,3, and c, = cos (ei) , 1 =1,2,3.
Solving Eq. C.5 for 61 s 92 ,» and 93 gives

6, =% [we +ocs, |
17 ¢, 1% 7 92%3 0ci8, 1

= (.Dls3 + w203 = esl , (C-6)

[en]
N
|

. i
05 = c, [-sycqm) + 8y85my) + cpug- ;0] .

Note that a singularity appears in Eq. C.6 when 62 = 90° . This

difficulty is avoided in Section 5.3 by simply choosing initial states
such that ‘ez(t)‘ < 90° , tO <tg tf . Furthermore, regions of indif-
ference (see [2], pg. 13) exist when specifying the satellite orienta-
tion by the three-axis Euler angles, ei » 1 =1,2,3, This is due to
the fact that a given geometrical orientation, spgcified by Gi »

i =1,2,3, may also be specified by ei + 2tm , i = 1,2,3, where m 1is
any positive integer. The control problems created by this multi-
valued nature of the Euler angles are again avoided in Section 5.3

by choosing initial states such that ‘ei(t)\ < 180° , t

<tgt

A

0 £

Eq. C.4 and Eq. C.6 are the equations of motion utilized in Sec-
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tion 5.3 to solve the satellite attitude-acquisition problem. In
Eq. C.6 , o(t) , tO <t f.tf » is determined by the particular orbit

of interest, and is therefore considered to be a prescribed function,
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APPENDIX D
STATE DETERMINATION FOR MINIMUM-TIME

SATELLITE ATTITUDE-ACQUISITION PROBLEM

The neighboring feedback control scheme developed in this disser-
tation is based upon the assumption that the system state, x(t) , is
known exactly. McNeal [6] proved a separation theorem which allows
one to replace =x(t) with an estimate of the state, &(t) , in the
neighboring feedback control law. This theorem is based upon the assump-
tion that the system dynamics and the state measurements are contamin-
ated with additive noise which possesses the properties of white Gaussian
random processes. It is assumed that control and estimation are separ-
able in the minimum-time satellite attitude-acquisition problem dis-
cussed in Section 5.3. The purpose of this appendix is to briefly dis-
cuss, without going into the details of -estimation theory, the general
approach used to estimate the state of the satellite for this attitude-
acquisition problem,

The state variables for this system were chosen to be the three-axis
Euler angles, ei(t),i = 1,2,3, relative to the orbital reference axes,and the
inertial angular velocity components along the principal axes of the satel-
lite,wi(t), i =1,2,3 (see Appendix C). Information about wi(t) ,

i =1,2,3, may be obtained from a three-axis, strapped down, single
degree-of-freedom gyro package. This package consists of three single-
axis rate or rate-integrating gyros which are fixed to the satellite and

%
whose input axes are parallel to each principal axis of the satellite.

*

If the body angular rates are measured about a non-principal axis
coordinate system, they can easily be transformed into a principal axis
system by a constant 3 x 3 matrix transformation and all computations
can then take place in that coordinate frame.
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The outputs from these gyros are the angular rates, wi(t) » 1 =1,2,3,
and additive noise due to gyro unbalance, stray magnetic field and
temperature effects, gyro-misalignment errors, gyro bearing friction,
and other causes. The gyro error is usually modeled by a bias error
plus a zero-mean white Gaussian random process. For precise angular
rate determination, these errors must be accurately estimated and then
subtracted from the gyro-output signal.

Assuming that wi(t) » 1 =1,2,3, can accurately be determined
in this manner, the Euler angles can be calculated by integrating the

satellite's kinematical equations, repeated here for convenience (see

Eq. C.6):

L .
1 = c, lwey - wysy + 8ey8,1

_1 .
63 = c, [-sycqw) + 8,85wy + cowg - c40]

where @ 1is taken to be a prescribed function. Two fundamental
problems arise when using this approach. First, initial values for the
Euler angles are usually inaccurate, if available, since they cannot
be measured directly. ‘Second, since the gyros possess bias errors,
the long-term errors in ei(t)’ i =1,2,3, will be unbounded.

Jackson [20] discusses and demonstrates the fact that compensation
for the angular rate measurement bias errors and noise is possible
when some satellite orientation information is available. In addition,

this information may be used to obtain estimates, with bounded long-
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term errors, of the three-axis Euler angles. The required orientation
information may be obtained by utilizing one or more onboard sensors
which may or may not be mounted on gimbals. Horizon sensors, sun sensors,
star sensors, and landmark sensors, to name a few, utilize telescopic
or photographic devices to detect the horizon, the sun, a specified star,
and a specified landmark, respectively., If the sensor is mounted on
gimbals, a servomechanism can be utilized, after acquisition, to "hold"
the target for as long as the target is in the satellite's field of view.
If the sensor is rigidly fixed to the satellite, the sensor outputs are
time pulses which occur whenever the target passes the sensor's field
of view.

The main feature of the sensors mentioned above is that each det-

ermines the representation of a unit vector, V , in the body fixed

reference frame. Denote this representation by ﬁé , and let Vk denote

V in the orbital reference frame. After target acquisition, V is
the unit vector parallel to the sensor's line of sight and directed to-

ward the target. Since the satellite's orbital motion is assumed known,

\

R is a prescribed function of orbital position.

There exists a real orthogonal transformation matrix, TBR » which

maps VR into ﬁg . Thus,

Vﬁ = TBRVR . (D.2)

For the three-axis Euler angle representation of attitude, the elements
of TBR are trigonometric functions of ei(t)’ i=1,2,3 . Thus, the
sensor outputs are nonlinear functions of the Euler angles which may
or may not supply sufficient information to determine the satellite

orientation. In addition, any sensor used to obtain these functions

111



will be contaminated with noise. This noise must be modeled and com-
pensated for in order to accurately extract the satellite attitude from
the given measurements.

Fortunately, existing gyros and sensors often possess error char-
acteristics that can be modeled quite accurately as normally dis-
tributed white random processes. This allows oné to turn to the exten-
sive literature on linear and nonlinear stochastic estimation theory to
implement a system for estimating wi(t) s, L =1,2,3, as well as
ei(t), i=1,2,3 (see, for example, [13] and [20]). Either observers,
designed to regulate the transient behavior of the state error '§(t) =
x(t) - R(t) , or filters, designed to determine %®(t) in some optimal
sense, can be developed to determine an estimate of the satellite state.
The gyro package and at least one attitude sensor are required in order

to develop an accurate state estimator.

The existiné theory for linear estimators is quite extensive.
To be applicable to the system of interest here, the state dynamical
equations (Eq. C.4 and Eq. C.6) and the state observations must be
linearized about a nominal path. The estimator would then be accur-
ate only when state deviations from the nominal are small, For the
neighboring control scheme, this technique would probably work quite
well when the nominal path is the optimal path generated by the nom-
inal control law. When the state deviations are large, however, it would
probably be necessary to use nonlinear estimation techniques since the
dynamical equations for ei(t) , 1=1,2,3, and the state observations
are highly nonlinear. Since nonlinear estimation theory is not as highly
developed as linear estimation theory, the performance of a given nonlin-
ear estimator must be determined by a simulation of the particular sys-
tem of interest. It is noted that all significant sensor errors must
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be incorporated in the design of the linear or nonlinear state esti-
mator, In particular, bias errors, when present, must appear explicitly
in the estimator dynamics.

It is finally noted that other attitude representations may also
be used to specify the system state, such as the Euler parameter and
direction cosine representations. A discussion of these representations
and their advantages over the Euler angle representation, with regard

to nonlinear state estimation, is presented in [20].
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